Skip to main content
Log in

Infinity-enhancing of Leibniz algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a correspondence between infinity-enhanced Leibniz algebras, recently introduced in order to encode tensor hierarchies (Bonezzi and Hohm in Commun Math Phys 377:2027–2077, 2020), and differential graded Lie algebras, which have been already used in this context. We explain how any Leibniz algebra gives rise to a differential graded Lie algebra with a corresponding infinity-enhanced Leibniz algebra. Moreover, by a theorem of Getzler, this differential graded Lie algebra canonically induces an \(L_\infty \)-algebra structure on the suspension of the underlying chain complex. We explicitly give the brackets to all orders and show that they agree with the partial results obtained from the infinity-enhanced Leibniz algebras in Bonezzi and Hohm (Commun Math Phys 377:2027–2077, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Unfortunately, the differential graded Lie algebra in [41] was also called ‘tensor hierarchy algebra’, but there is an important difference: the tensor hierarchy algebra in [35] is a priori not a differential graded Lie algebra, but a \(\mathbb {Z}\)-graded Lie superalgebra with a subspace at degree \(-1\) accommodating all possible embedding tensors satisfying the representation constraint. Restricting it to a one-dimensional subspace spanned by one particular embedding tensor leads to the differential graded Lie algebra called ‘tensor hierarchy algebra’ in [41].

  2. The solid lines would correspond to functors in the language of category theory. Then, given the diagram, there would exist a canonical functor from the category of Leibniz algebras to the category of \(L_\infty \)-algebras (that restricts to the identity functor on the full subcategory of Lie algebras). However, we do not address this question explicitly in this paper, because that would significantly increase its length and obscure our original motivation. See also [53] for another point of view on this question.

  3. Obviously, the suspension operator has an inverse. It is called the desuspension operator and is denoted \(s^{-1}\).

  4. By (3.5), we see that the generalized Lie derivatives are endomorphisms of \(\mathfrak {gl}(V)\), so \(T_0\) can be seen as a sub-Lie-algebra of \(\mathfrak {gl}(V)\). Moreover, by (2.22), we have that \(\mathcal {L}_x(y)=x\circ y=x_L(y)\) for every \(x,y\in V\). Hence, \(\mathcal {L}_x\) and \(x_L\) define the same endomorphism on V; however, it could well happen that for some \(x\in \mathcal {Z}\), the right-hand side of (3.6) is not vanishing, implying that \(T_0\) may be bigger than \({V}\Big /{\mathcal {Z}}\). This is consistent with the fact that the map \(x\longmapsto \mathcal {L}_x\) defines an embedding tensor \(\Theta :V\rightarrow \mathfrak {gl}(V)\). Then, by (2.27), we obtain again that \(T_0=\mathrm {Im}(\Theta )\simeq {V}\Big /{\mathrm {Ker}(\Theta )}\) may have a bigger dimension than \({V}\Big /{\mathcal {Z}}\).

  5. There are actually many more non-negatively graded dgLa than there are infinity-enhanced Leibniz algebras, because the degree 0 part of such a dgLa T is forgotten by the functor G. This opens the question of the physical information that may be contained in \(T_0\), and that cannot be captured by the associated infinity-enhanced Leibniz algebra G(T).

  6. The rigorous formula is

    $$\begin{aligned} \sum _{i+j=n+1}\ (-1)^{i(j-1)} \sum _{\sigma \in \text {Un}(i,n-i)}\epsilon ^\sigma _{x_1,\ldots ,x_n}\,l_{j}\big (l_i(x_{\sigma (1)},\ldots ,x_{\sigma (i)}),x_{\sigma (i+1)},\ldots ,x_{\sigma (n)}\big )=0\nonumber \\ \end{aligned}$$
    (4.2)

    where \(\text {Un}(i,n-i)\) is the set of \((i,n-i)\)-unshuffles and where \(\epsilon ^\sigma _{x_1,\ldots ,x_n}\) is the sign induced by the permutation of the elements \(x_1,\ldots , x_n\) in the exterior algebra of X, i.e., \(x_1\wedge \ldots x_n=\epsilon ^\sigma _{x_1,\ldots ,x_n} x_{\sigma (1)}\wedge \ldots \wedge x_{\sigma (n)}\).

  7. See for example Remark 5.4 in [52] and there replace the differential \(\partial \) with the map D defined in [51]. Unfortunately, they also made a mistake in this application: for \(n\ge 2\) the right-hand side of the formula computing the \(n+1\) bracket should inherit a minus sign.

  8. Since Getzler’s 1-bracket is \(\{a\}=\partial (a)\), we pick up a minus sign from (4.3).

  9. Getzler’s definition of higher brackets does not satisfy the definition of a \(L_\infty \)-algebra, but it does if we reverse the sign of the odd brackets of order 3 and higher (even brackets of order 4 and higher are vanishing anyway since \(B_3=B_5=\cdots =0\)). Hence, when passing to the skew-symmetric convention, the odd brackets inherit a plus sign, because the sign brought by the translation from the symmetric convention to the skew-symmetric convention (see (4.3)) cancels the sign that we added to correct Getzler’s formula for odd brackets of order 3 and higher.

References

  1. Bonezzi, R., Hohm, O.: Leibniz Gauge theories and infinity structures. Commun. Math. Phys. 377, 2027–2077 (2020). [arXiv:1904.11036]

    ADS  MathSciNet  MATH  Google Scholar 

  2. Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Annal. 296, 139–158 (1993)

    MathSciNet  MATH  Google Scholar 

  3. de Wit, B., Samtleben, H., Trigiante, M.: On Lagrangians and gaugings of maximal supergravities. Nucl. Phys. B 655, 93–126 (2003). [arXiv:hep-th/0212239]

    ADS  MathSciNet  MATH  Google Scholar 

  4. de Wit, B., Samtleben, H., Trigiante, M.: The Maximal \(D=5\) supergravities. Nucl. Phys. B 716, 215–247 (2005). [arXiv:hep-th/0412173]

    ADS  MathSciNet  MATH  Google Scholar 

  5. de Wit, B., Samtleben, H.: Gauged maximal supergravities and hierarchies of nonAbelian vector–tensor systems. Fortsch. Phys. 53, 442–449 (2005). [arXiv:hep-th/0501243]

    ADS  MathSciNet  MATH  Google Scholar 

  6. de Wit, B., Nicolai, H., Samtleben, H.: Gauged supergravities, tensor hierarchies, and M-theory. JHEP 0802, 044 (2008). [arXiv:0801.1294]

    MathSciNet  Google Scholar 

  7. Trigiante, M.: Gauged Supergravities. Phys. Rept. 680, 1–175 (2017). [arXiv:1609.09745]

    ADS  MathSciNet  MATH  Google Scholar 

  8. Hull, C., Zwiebach, B.: The Gauge algebra of double field theory and Courant brackets. JHEP 09, 090 (2009). [arXiv:0908.1792]

    ADS  MathSciNet  Google Scholar 

  9. Coimbra, A., Strickland-Constable, C., Waldram, D.: \(E_{d(d)} \times \mathbb{R}^+\) generalised geometry, connections and M-theory. JHEP 1402, 054 (2014). [arXiv:1112.3989]

    ADS  MATH  Google Scholar 

  10. Berman, D.S., Cederwall, M., Kleinschmidt, A., Thompson, D.C.: The gauge structure of generalised diffeomorphisms. JHEP 01, 064 (2013). [arXiv:1208.5884]

    ADS  Google Scholar 

  11. Cederwall, M., Edlund, J., Karlsson, A.: Exceptional geometry and tensor fields. JHEP 07, 028 (2013). [arXiv:1302.6736]

    ADS  MathSciNet  MATH  Google Scholar 

  12. Cederwall, M.: Non-gravitational exceptional supermultiplets. JHEP 07, 025 (2013). [arXiv:1302.6737]

    ADS  MathSciNet  MATH  Google Scholar 

  13. Aldazabal, G., Graña, M., Marqués, D., Rosabal, J.: Extended geometry and gauged maximal supergravity. JHEP 1306, 046 (2013). [arXiv:1302.5419]

    ADS  MathSciNet  MATH  Google Scholar 

  14. Hohm, O., Samtleben, H.: Gauge theory of Kaluza–Klein and winding modes. Phys. Rev. D 88, 085005 (2013). [arXiv:1307.0039]

    ADS  Google Scholar 

  15. Hohm, O., Samtleben, H.: Exceptional form of \({D}=11\) supergravity. Phys. Rev. Lett. 111, 231601 (2013). [arXiv:1308.1673]

    ADS  Google Scholar 

  16. Hohm, O., Samtleben, H.: Exceptional field theory I: E\(_{6(6)}\) covariant form of M-theory and type IIB. Phys. Rev. D 89, 066016 (2014). [arXiv:1312.0614]

    ADS  Google Scholar 

  17. Hohm, O., Samtleben, H.: Exceptional field theory II: E\(_{7(7)}\). Phys. Rev. D 89, 066017 (2014). [arXiv:1312.4542]

    ADS  Google Scholar 

  18. Hohm, O., Samtleben, H.: Exceptional field theory. III. E\(_{8(8)}\). Phys. Rev. D 90, 066002 (2014). [arXiv:1406.3348]

    ADS  Google Scholar 

  19. Hohm, O., Wang, Y.-N.: Tensor hierarchy and generalized Cartan calculus in \(SL(3) \times SL(2)\) exceptional field theory. JHEP 04, 050 (2015). [arXiv:1501.01600]

    ADS  MathSciNet  Google Scholar 

  20. Abzalov, A., Bakhmatov, I., Musaev, E.T.: Exceptional field theory: \(SO(5,5)\). JHEP 06, 088 (2015). [arXiv:1504.01523]

    ADS  MathSciNet  MATH  Google Scholar 

  21. Wang, Y.-N.: Generalized Cartan calculus in general dimension. JHEP 07, 114 (2015). [arXiv:1504.04780]

    ADS  MathSciNet  MATH  Google Scholar 

  22. Cederwall, M., Rosabal, J.A.: E\(_{8}\) geometry. JHEP 07, 007 (2015). [arXiv:1504.04843]

    ADS  Google Scholar 

  23. Musaev, E.T.: Exceptional field theory: \(SL(5)\). JHEP 02, 012 (2016). [arXiv:1512.02163]

    ADS  MathSciNet  MATH  Google Scholar 

  24. Berman, D.S., Blair, C.D.A., Malek, E., Rudolph, F.J.: An action for F-theory: \({{\rm SL}}(2)\times {\mathbb{R}}^{+}\) exceptional field theory. Class. Quant. Grav. 33, 195009 (2016). [arXiv:1512.06115]

    ADS  MathSciNet  MATH  Google Scholar 

  25. Deser, A., Saemann, C.: Extended Riemannian geometry I: local double field theory. C. Ann. Henri Poincaré 19, 2297 (2018). [arXiv:1611.02772]

    ADS  MathSciNet  MATH  Google Scholar 

  26. Bossard, G., Cederwall, M., Kleinschmidt, A., Palmkvist, J., Samtleben, H.: Generalized diffeomorphisms for \(E_9\). Phys. Rev. D 96, 106022 (2017). [arXiv:1708.08936]

    ADS  MathSciNet  Google Scholar 

  27. Cederwall, M., Palmkvist, J.: Extended geometries. JHEP 02, 071 (2018). [arXiv:1711.07694]

    ADS  MathSciNet  MATH  Google Scholar 

  28. Cagnacci, Y., Codina, T., Marques, D.: \(L_\infty \) algebras and tensor hierarchies in exceptional field theory and gauged supergravity. JHEP 2019, 117 (2019). [arXiv:1807.06028]

    MathSciNet  MATH  Google Scholar 

  29. Cederwall, M., Palmkvist, J.: \(L_\infty \) algebras for extended geometry from Borcherds superalgebras. Commun. Math. Phys. 369, 721 (2019). [arXiv:1804.04377]

    ADS  MathSciNet  MATH  Google Scholar 

  30. Hohm, O., Samtleben, H.: Leibniz–Chern–Simons theory and phases of exceptional field theory. Commun. Math. Phys. 369, 1055 (2019). [arXiv:1805.03220]

    MathSciNet  MATH  Google Scholar 

  31. Bossard, G., Ciceri, F., Inverso, G., Kleinschmidt, A., Samtleben, H.: E\(_{9}\) exceptional field theory. Part I. The potential. JHEP 03, 089 (2019). [arXiv:1811.04088]

    ADS  MathSciNet  MATH  Google Scholar 

  32. Hohm, O., Samtleben, H.: Higher Gauge structures in double and exceptional field theory. In: Durham symposium, higher structures in M-theory Durham, UK, August 12–18, 2018. (2019). [arXiv:1903.02821]

  33. Strobl, T.: Non-abelian Gerbes and enhanced Leibniz algebras. Phys. Rev. D 94, 021702 (2016). [arXiv:1607.00060]

    ADS  MathSciNet  Google Scholar 

  34. Strobl, T., Wagemann, F.: Enhanced Leibniz algebras: structure theorem and induced lie 2-algebra [arXiv:1901.01014]

  35. Palmkvist, J.: The tensor hierarchy algebra. J. Math. Phys. 55, 011701 (2014). [arXiv:1305.0018]

    ADS  MathSciNet  MATH  Google Scholar 

  36. Greitz, J., Howe, P., Palmkvist, J.: The tensor hierarchy simplified. Class. Quant. Grav. 31, 087001 (2014). [arXiv:1308.4972]

    ADS  MathSciNet  MATH  Google Scholar 

  37. Henneaux, M., Julia, B.L., Levie, J.: \(E_{11}\), Borcherds algebras and maximal supergravity. JHEP 1204, 078 (2012). [arXiv:1007.5241]

    ADS  MATH  Google Scholar 

  38. Palmkvist, J.: Tensor hierarchies, Borcherds algebras and \(E_{11}\). JHEP 1202, 066 (2012). [arXiv:1110.4892]

    ADS  MathSciNet  MATH  Google Scholar 

  39. Cederwall, M., Palmkvist, J.: Superalgebras, constraints and partition functions. JHEP 08, 036 (2015). [arXiv:1503.06215]

    ADS  MathSciNet  MATH  Google Scholar 

  40. Palmkvist, J.: Exceptional geometry and Borcherds superalgebras. JHEP 11, 032 (2015). [arXiv:1507.08828]

    ADS  MathSciNet  MATH  Google Scholar 

  41. Lavau, S.: Tensor hierarchies and Leibniz algebras. J. Geom. Phys. 144, 147–189 (2019). [arXiv:1708.07068]

    ADS  MathSciNet  MATH  Google Scholar 

  42. Lada, T., Stasheff, J.: Introduction to SH Lie algebras for physicists. Int. J. Theor. Phys. 32, 1087–1104 (1993). [arXiv:hep-th/9209099]

    MathSciNet  MATH  Google Scholar 

  43. Lada, T., Markl, M.: Strongly homotopy Lie algebras. Commun. Algebr. 23, 2147–2161 (1994)

    MathSciNet  MATH  Google Scholar 

  44. Palmer, S., Saemann, C.: Six-dimensional (1,0) superconformal models and higher Gauge theory. J. Math. Phys. 54, 113509 (2013). [arXiv:1308.2622]

    ADS  MathSciNet  MATH  Google Scholar 

  45. Lavau, S., Samtleben, H., Strobl, T.: Hidden Q-structure and Lie 3-algebra for non-abelian superconformal models in six dimensions. J. Geom. Phys. 86, 497–533 (2014). [arXiv:1403.7114]

    ADS  MathSciNet  MATH  Google Scholar 

  46. Ritter, P., Saemann, C.: \(L_\infty \)-algebra models and higher Chern–Simons theories. Rev. Math. Phys. 28, 1650021 (2016). [arXiv:1511.08201]

    MathSciNet  MATH  Google Scholar 

  47. Saemann, C., Schmidt, L.: The non-abelian self-dual string and the (2,0)-theory [arXiv:1705.02353]

  48. Hohm, O., Zwiebach, B.: \(L_{\infty }\) algebras and field theory. Fortsch. Phys. 65, 1700014 (2017). [arXiv:1701.08824]

    ADS  MathSciNet  MATH  Google Scholar 

  49. Deser, A., Saemann, C.: Derived brackets and symmetries in generalized geometry and double field theory. In: 17th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2017) Corfu, Greece, September 2–28, 2017 (2018). [arXiv:1803.01659]

  50. Jurčo, B., Saemann, C., Schreiber, U., Wolf, M.: Higher structures in M-theory. In: Durham symposium, higher structures in M-theory Durham, UK, August 12–18, 2018. (2019). [arXiv:1903.02807]

  51. Getzler, E.: Higher derived brackets [arXiv:1010.5859]

  52. Fiorenza, D., Manetti, M.: L-infinity structures on mapping cones. Algebra & Number Theory 1, 301–330 (2007). [arXiv:math/0601312]

    MathSciNet  MATH  Google Scholar 

  53. Kotov, A., Strobl, T.: The embedding tensor, Leibniz-Loday algebras, and their higher gauge theories. [arXiv:1812.08611]

  54. Samtleben, H., Sezgin, E., Wimmer, R.: (1,0) superconformal models in six dimensions. JHEP 12, 062 (2011). [arXiv:1108.4060]

    ADS  MathSciNet  MATH  Google Scholar 

  55. Carbone, L., Cederwall, M., Palmkvist, J.: Generators and relations for Lie superalgebras of Cartan type. [arXiv:1802.05767]

  56. Bossard, G., Kleinschmidt, A., Palmkvist, J., Pope, C.N., Sezgin, E.: Beyond \(E_{11}\). JHEP 05, 020 (2017). [arXiv:1703.01305]

    ADS  MATH  Google Scholar 

  57. Bossard, G., Kleinschmidt, A., Sezgin, E.: On supersymmetric \(E_{11}\) exceptional field theory. [arXiv:1907.02080]

  58. Cederwall, M., Palmkvist, J.: Extended geometry and tensor hierarchy algebras (to appear)

  59. Kosmann-Schwarzbach, Y.: Derived Brackets. Lett. Math. Phys. 69, 61–87 (2004). [arXiv:math/0312524]

    ADS  MathSciNet  MATH  Google Scholar 

  60. Kantor, I.L.: Graded Lie algebras. Trudy Sem. Vect. Tens. Anal. 15, 227–266 (1970)

    MathSciNet  MATH  Google Scholar 

  61. Palmkvist, J.: Three-algebras, triple systems and 3-graded Lie superalgebras. J. Phys. A A43, 015205 (2010). [arXiv:0905.2468]

    ADS  MathSciNet  MATH  Google Scholar 

  62. Mehta, R., Zambon, M.: L-infinity algebra actions. Differ. Geom. Appl. 30, 576–587 (2012). [arXiv:1202.2607]

    MATH  Google Scholar 

  63. Bering, K.: On non-commutative Batalin–Vilkovisky algebras, strongly homotopy Lie algebras and the Courant bracket. Commun. Math. Phys. 274, 297–341 (2007). [arXiv:hep-th/0603116]

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Roberto Bonezzi, Martin Cederwall, Olaf Hohm and Jim Stasheff for discussions and comments on the first version of this paper. In particular we are grateful to Olaf Hohm for explaining the ideas behind the work [1]. We would also like to thank the anonymous referee for suggesting some well justified clarifications on the role of the degree-zero subspace of the differential graded Lie algebras. This work was initiated during a visit at Institut des Hautes Études Scientifiques (IHÉS), and we would like to thank the institute for its hospitality. The work of JP is supported by the Swedish Research Council, project no. 2015-02468. The work of SL is supported by the Agence Nationale de la Recherche, project SINGSTAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Lavau.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavau, S., Palmkvist, J. Infinity-enhancing of Leibniz algebras. Lett Math Phys 110, 3121–3152 (2020). https://doi.org/10.1007/s11005-020-01324-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01324-7

Navigation