Skip to main content

Advertisement

Log in

Coke combustion kinetics of spent Pt-Sn/Al2O3 catalysts in propane dehydrogenation

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The kinetics of coke combustion was investigated by using a thermogravimetric analyzer (TGA) of coked catalysts which was used for propane dehydrogenation to determine the activation energy. Apart from the Pt/Al2O3 catalyst, four different Pt-Sn/Al2O3 catalysts were prepared by varying the Pt/Sn ratio from 3: 0.5 to 3: 3 by weight. The catalytic activity was measured by propane dehydrogenation at 620 °C. The reactant mixture consisting of C3H8 (30 ml/min) and H2 (30 ml/min) was fed into the reactor for 5 h. A thermogravimetric analyzer in the presence of air was used to determine the amount of coke deposited and calculate the kinetic parameters for coke combustion. Three non-isothermal models (Friedman, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose) were used to determine the activation energy and the best model to fit the experimental data. The FWO model provided the best fit for 3Pt/Al2O3 and 3Pt-0.5Sn/Al2O3. The three models were equivalent for fitting the data for 3Pt-1Sn/Al2O3, 3Pt-2Sn/Al2O3, and 3Pt-3Sn/Al2O3. The activation energy increased with increasing Sn addition in the 3Pt/Al2O3 catalyst. Differences in the locations and the qualitative features of the cokes were suggested to interpret the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez and B. M. Weckhuysen, Chem. Rev., 114, 10613 (2014).

    Article  CAS  Google Scholar 

  2. Z. Nawaz, Rev. Chem. Eng., 31, 413 (2015).

    Article  CAS  Google Scholar 

  3. M. M. Bhasin, J. H. McCain, B. V. Vora, T. Imai and P. R. Pujadó, Appl. Catal. A Gen., 221, 397 (2001).

    Article  CAS  Google Scholar 

  4. S. M. Stagg, C. A. Querini, W. E. Alvarez and D. E. Resasco, J. Catal., 168, 75 (1997).

    Article  CAS  Google Scholar 

  5. B. V. Vora, Top. Catal., 55, 1297 (2012).

    Article  CAS  Google Scholar 

  6. J. J. H. B. Sattler, I. D. Gonzalez-Jimenez, L. Luo, B. A. Stears, A. Malek, D. G. Barton, B. A. Kilos, M. P. Kaminsky, T. Verhoeven, E. J. Koers, M. Baldus and B. M. Weckhuysen, Angew. Chem. Int. Ed., 53, 9251 (2014).

    Article  CAS  Google Scholar 

  7. J.-W. Jung, W.-I. Kim, J.-R. Kim, K. Oh and H. L. Koh, Catalysts, 9, 446 (2019).

    Article  CAS  Google Scholar 

  8. H.-Z. Wang, L.-L. Sun, Z.-J. Sui, Y.-A. Zhu, G.-H. Ye, D. Chen, X.-G. Zhou and W.-K. Yuan, Ind. Eng. Chem. Res., 57, 8647 (2018).

    Article  CAS  Google Scholar 

  9. A. Ochor, A. Ibarra, J. Bilbao, J. M. Arandes and P. Castano, Chem. Eng. Sci., 171, 459 (2017).

    Article  Google Scholar 

  10. P. B. Weisz and R. B. Goodwin, J. Catal., 6, 227 (1966).

    Article  CAS  Google Scholar 

  11. P. B. Weisz, J. Catal., 6, 425 (1966).

    Article  CAS  Google Scholar 

  12. P. K. Doolin, J. F. Hoffman and M. M. Mitchell Jr., Appl. Catal., 71, 233 (1991).

    Article  CAS  Google Scholar 

  13. I. V. Babich, K. Seshan and L. Lefferts, Appl. Catal. B Environ., 59, 205 (2005).

    Article  CAS  Google Scholar 

  14. A. N. Zagoruiko, A. S. Belyi, M. D. Smolikov and A. S. Noskov, Catal. Today, 220, 168 (2014).

    Article  Google Scholar 

  15. M. Mehraban and B. H. Shahraki, Fuel Process. Technol., 188, 172 (2019).

    Article  CAS  Google Scholar 

  16. S. Luo, S. He, X. Li, J. Li, W. Bi and C. Sun, Fuel Process. Technol., 129, 156 (2015).

    Article  CAS  Google Scholar 

  17. P. Tiwari and M. Deo, AIChE J., 58, 505 (2012).

    Article  CAS  Google Scholar 

  18. P. Das and P. Tiwari, Thermochim. Acta, 654, 191 (2017).

    Article  CAS  Google Scholar 

  19. T. U. Han, Y.-M. Kim, A. Watanabe, N. Teramae, Y.-K. Park and S. Kim, Korean J. Chem. Eng., 34, 1214 (2017).

    Article  CAS  Google Scholar 

  20. J. W. Kim, S.-H. Lee, S.-S. Kim, S. H. Park, J.-K. Jeon and Y.-K. Park, Korean J. Chem. Eng., 28, 1867 (2011).

    Article  CAS  Google Scholar 

  21. P. Bartocci, R. Tschentscher, R. E. Stensrød, M. Barbanera and F. Frantozzi, Molecules, 24, 1657 (2019).

    Article  CAS  Google Scholar 

  22. H. L. Friedman, J. Polym. Sci. C, 6, 183 (1964).

    Article  Google Scholar 

  23. H. Kissinger, J. Res. Natl. Bur. Stand., 57, 217 (1956).

    Article  CAS  Google Scholar 

  24. T. Akahira and T. Sunose, Res. Rep. Chiba. Inst. Technol. (Sci. Technol.), 16, 22 (1971).

    Google Scholar 

  25. T. Ozawa, Bull. Chem. Soc. Japan, 38, 1881 (1965).

    Article  CAS  Google Scholar 

  26. J. H. Flynn and L. A. Wall, Polym. Lett., 4, 323 (1966).

    Article  CAS  Google Scholar 

  27. C. D. Doyle, J. Appl. Polym. Sci., 6, 639 (1961).

    Article  Google Scholar 

  28. J. M. Criado, Thermochim. Acta, 24, 186 (1978).

    Article  CAS  Google Scholar 

  29. I. A. Pérez-Maqueda, J. M. Criado, F. J. Gotor and J. Málek, J. Phys. Chem. A, 106, 2862 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the industry core-technology project termed “Development of High Yield Propylene Production Process Technology” of the Ministry of Trade, Industry, and Energy (project No.: 100052754; Korea Evaluation Institute of Industrial Technology), and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03034244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Lim Koh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasution, P.S., Jung, JW., Oh, K. et al. Coke combustion kinetics of spent Pt-Sn/Al2O3 catalysts in propane dehydrogenation. Korean J. Chem. Eng. 37, 1490–1497 (2020). https://doi.org/10.1007/s11814-020-0536-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0536-z

Keywords

Navigation