Skip to main content
Log in

Unusual Diffusion Behavior of Copper-Hexadecafluoro-Phthalocyanine Molecules on Au(111)

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The unusual bias-voltage dependence of copper-hexadecafluoro-phthalocyanine (F16CuPc) molecules on Au(111) was investigated by using scanning tunneling microscopy/spectroscopy (STM/STS) at low temperatures. Depending on the bias polarity, the molecules seem to cover the whole surface of Au(111) at positive bias voltages while they are apparently invisible in STM images at negative bias voltages. Here, we experimentally demonstrate that the molecular diffusivity on Au(111) varies according to the applied electric field induced between the STM tip and the Au(111) surface rather than the intrinsic molecule-substrate interaction. Such results are corroborated by STS measurements indicating that attraction/repulsion of a molecule indeed occurs under an STM tip at positive/negative bias voltages during sweeps of the bias voltage. In addition, we found that the diffusive molecules are immobilized at a temperature of 8 K at both positive and negative bias voltages due to a lack of thermal energy for diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ulman, Chem. Rev. 96, 1533 (1996).

    Article  Google Scholar 

  2. Z. Suo and W. Hong, Proc. Natl. Acad. Sci. USA 101, 7874 (2004).

    Article  ADS  Google Scholar 

  3. H. B. Akkerman, P. W. Blom, D. M. De Leeuw and B. De Boer, Nature 441, 69 (2006).

    Article  ADS  Google Scholar 

  4. J. M. Klingsporn et al., J. Am. Chem. Soc. 136, 3881 (2014).

    Article  Google Scholar 

  5. P. J. Whiteman et al., J. Phys. Chem. C 122, 5489 (2018).

    Article  Google Scholar 

  6. S. Mahapatra et al., Nanoscale 11, 19877 (2019).

    Article  Google Scholar 

  7. Y. Wakayama, D. G. de Oteyza, J. M. Garcia-Lastra and D. J. Mowbray, ACS Nano 5, 581 (2011).

    Article  Google Scholar 

  8. O. Snezhkova et al., J. Chem. Phys. 144, 94702 (2016).

    Article  Google Scholar 

  9. A. Mänz, A. A. Hauke and G. Witte, J. Phys. Chem. C 122, 2165 (2018).

    Article  Google Scholar 

  10. Q. Wang et al., ACS Appl. Mater. Interfaces 12, 14542 (2020).

    Article  Google Scholar 

  11. L. W. Liu et al., Appl. Phys. Lett. 103, 023110 (2013).

    Article  ADS  Google Scholar 

  12. Y. H. Jiang et al., J. Phys. Chem. C 115, 21750 (2011).

    Article  Google Scholar 

  13. L. A. Agapito, C. Cao and H. P. Cheng, Phys. Rev. B 78, 155421 (2008).

    Article  ADS  Google Scholar 

  14. P. Matvija et al., Sci. Rep. 7, 7357 (2017).

    Article  ADS  Google Scholar 

  15. Y. Hu, Y. Zhu, H. Gao and H. Guo, Phys. Rev. Lett. 95, 156803 (2005).

    Article  ADS  Google Scholar 

  16. N. Jiang et al., Nano Lett. 12, 5061 (2012).

    Article  ADS  Google Scholar 

  17. N. Jiang et al., Nano Lett. 10, 1184 (2010).

    Article  ADS  Google Scholar 

  18. Y. C. Jeong et al., J. Phys. Chem. C 121, 17402 (2017).

    Article  Google Scholar 

  19. H. Huang, W. Chen and A. T. S. Wee, J. Phys. Chem. C 112, 14913 (2008).

    Article  Google Scholar 

  20. Y. L. Huang et al., Appl. Phys. A 95, 107 (2009).

    Article  ADS  Google Scholar 

  21. Y. L. Huang et al., Langmuir 26, 3329 (2010).

    Article  Google Scholar 

  22. H. Huang, S. L. Wong, W. Chen and A. T. S. Wee, J. Phys. D: Appl. Phys. 44, 464005 (2011).

    Article  Google Scholar 

  23. A. Sabik et al., J. Chem. Phys. 149, 144702 (2018).

    Article  ADS  Google Scholar 

  24. A. Sabik, A. Trembulowicz, P. Mazur and G. Antczak, Surf. Sci. 693, 121534 (2020).

    Article  Google Scholar 

  25. B. C. Stipe, M. A. Rezaei and W. Ho, Rev. Sci. Instrum. 70, 137 (1999).

    Article  ADS  Google Scholar 

  26. T-H. Kim and H. W. Yeom, Phys. Rev. Lett. 109, 246802 (2012).

    Article  ADS  Google Scholar 

  27. S. Y. Song et al., Nanotechnology 27, 415711 (2016).

    Article  Google Scholar 

  28. S-C. Yan et al., Chin. Phys. Lett. 29, 046803 (2012).

    Article  ADS  Google Scholar 

  29. Y. C. Jeong et al., J. Phys. Chem. C 119, 27721 (2015).

    Article  Google Scholar 

  30. K. Akaike, A. Onishi, Y. Wakayama and K. Kanai, J. Phys. Chem. C 123, 12242 (2019).

    Article  Google Scholar 

  31. J. Ren et al., J. Chem. Phys. 134, 194706 (2011).

    Article  ADS  Google Scholar 

  32. K. M. Lau et al., Appl. Phys. Lett. 88, 173513 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institute for Basic Science (Grant No. IBS-R014-D1) and by a National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (Grant No. 2018R1A5A6075964, 2020R1F1A1076401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Kim, TH. & Ham, U. Unusual Diffusion Behavior of Copper-Hexadecafluoro-Phthalocyanine Molecules on Au(111). J. Korean Phys. Soc. 77, 258–263 (2020). https://doi.org/10.3938/jkps.77.258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.258

Keywords

Navigation