Skip to main content
Log in

Multi-material topology optimization of compliant mechanisms using regularized projected gradient approach

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this article, the identification of optimal topologies for multi-material compliant mechanisms based on the regularized projected gradient approach is presented and analyzed. The monolithic structure of compliant mechanisms makes them suitable to be used in microelectromechanical systems to transfer load and force. The use of additive manufacturing technologies makes it possible to build multi-material structures. However, a proper design optimization approach must be considered to design multi-material mechanisms as well. In this article, the solid isotropic material with a penalization (SIMP) material interpolation scheme is used to parameterize the continuum design domain. The perimeter penalization approach is utilized to remove the checkerboard patterns and scatters in optimal designs. To handle the volume equality constraint, the regularized constraint projection strategy is utilized. Some benchmark problems are considered to analyze the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vogtmann DE, Gupta SK, Bergbreiter S (2011) Multi-material compliant mechanisms for mobile millirobots. In: 2011 IEEE international conference on robotics and automation, IEEE, pp 3169–3174. https://doi.org/10.1109/icra.2011.5980543

  2. Howell LL, Magleby SP, Olsen BM (2013) Handbook of compliant mechanisms. John Wiley & Sons, Incorporated, New York, United States

    Book  Google Scholar 

  3. Zhang X, Zhu B (2018) Topology optimization of compliant mechanisms. Springer, Berlin

    Book  MATH  Google Scholar 

  4. Lee EH, Park J (2011) Structural design using topology and shape optimization. Struct Eng Mech 38(4):517–527. https://doi.org/10.12989/sem.2011.38.4.517

    Article  Google Scholar 

  5. Yin L, Ananthasuresh GK (2002) A novel topology design scheme for the multi-physics problems of electro-thermally actuated compliant micromechanisms. Sens Actuators A 97:599–609. https://doi.org/10.1016/S0924-4247(01)00853-6

    Article  Google Scholar 

  6. Xu D, Ananthasuresh GK (2003) Freeform skeletal shape optimization of compliant mechanisms. J Mech Des 125(2):253–261. https://doi.org/10.1115/1.1563634

    Article  Google Scholar 

  7. Zhou H, Ting KL (2005) Topological synthesis of compliant mechanisms using spanning tree theory. J Mech Des 127(4):753–759. https://doi.org/10.1115/1.1900148

    Article  Google Scholar 

  8. Luo Z, Du Y, Chen L, Yang J, Abdel-Malek K (2006) Continuum topology optimization for monolithic compliant mechanisms of micro-actuators. Acta Mech Solida Sin 19(1):58–68. https://doi.org/10.1007/s10338-006-0607-7

    Article  Google Scholar 

  9. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscipl Optim 21(2):120–127. https://doi.org/10.1007/s001580050176

    Article  Google Scholar 

  10. Zhou H, Mandala AR (2012) Topology optimization of compliant mechanisms using the improved quadrilateral discretization model. J Mech Robot 4(2):021007. https://doi.org/10.1115/1.4006194

    Article  Google Scholar 

  11. Yoon GH, Heo JC (2012) Constraint force design method for topology optimization of planar rigid-body mechanisms. Comput Aided Des 44(12):1277–1296. https://doi.org/10.1016/j.cad.2012.07.005

    Article  Google Scholar 

  12. Bujny M, Aulig N, Olhofer M, Duddeck F (2018) Identification of optimal topologies for crashworthiness with the evolutionary level set method. Int J Crashworthiness 23(4):395–416. https://doi.org/10.1080/13588265.2017.1331493

    Article  Google Scholar 

  13. Rostami P, Marzbanrad J (2020) Cooperative coevolutionary topology optimization using moving morphable components. Eng Optim. https://doi.org/10.1080/0305215X.2020.1759579

    Article  Google Scholar 

  14. Rostami P, Marzbanrad J (2020) Hybrid algorithms for handling the numerical noise in topology optimization. Acta Mech Sin 36(2):536–554. https://doi.org/10.1007/s10409-020-00942-7

    Article  MathSciNet  Google Scholar 

  15. Silva EN, Nishiwaki S, Kikuchi N (2000) Topology optimization design of flextensional actuators. IEEE Trans Ultrason Ferroelectr Freq Control 47(3):657–671. https://doi.org/10.1109/58.842054

    Article  Google Scholar 

  16. Silva ECN (2003) Topology optimization applied to the design of linear piezoelectric motors. J Intell Mater Syst Struct 14(4–5):309–322. https://doi.org/10.1177/1045389X03034684

    Article  Google Scholar 

  17. Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081009. https://doi.org/10.1115/1.4027609

    Article  Google Scholar 

  18. Wang, R., Zhu, B., Zhang, X., Zhang, H., & Chen, Q. (2018) Topology optimization of compliant mechanisms using moving morphable components with flexure hinge characteristic. In: 2018 international conference on manipulation, automation and robotics at small scales (MARSS), Nagoya, Japan, July 2018. https://doi.org/10.1109/marss.2018.8481175

  19. Deng J, Chen W (2016) Design for structural flexibility using connected morphable components based topology optimization. Sci China Technol Sci 59(6):839–851. https://doi.org/10.1007/s11431-016-6027-0

    Article  Google Scholar 

  20. Wang R, Zhang X, Zhu B (2019) Imposing minimum length scale in moving morphable component (MMC)-based topology optimization using an effective connection status (ECS) control method. Comput Methods Appl Mech Eng 351:667–693. https://doi.org/10.1016/j.cma.2019.04.007

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang Y, Luo Z, Zhang X, Kang Z (2014) Topological design of compliant smart structures with embedded movable actuators. Smart Mater Struct 23(4):045024. https://doi.org/10.1088/0964-1726/23/4/045024/meta

    Article  Google Scholar 

  22. Kogiso N, Ahn W, Nishiwaki S, Izui K, Yoshimura M (2008) Robust topology optimization for compliant mechanisms considering uncertainty of applied loads. J Adv Mech Des Syst Manuf 2(1):96–107. https://doi.org/10.1299/jamdsm.2.96

    Article  Google Scholar 

  23. Pedersen CB, Seshia AA (2004) On the optimization of compliant force amplifier mechanisms for surface micromachined resonant accelerometers. J Micromech Microeng 14(10):1281. https://doi.org/10.1088/0960-1317/14/10/001

    Article  Google Scholar 

  24. Lu KJ, Kota S (2006) Topology and dimensional synthesis of compliant mechanisms using discrete optimization. J Mech Des 128(5):1080–1091. https://doi.org/10.1115/1.2216729

    Article  Google Scholar 

  25. Du Y, Chen L (2009) Topology optimization for large-displacement compliant mechanisms using element free galerkin method. Int J CAD/CAM 8(1):1–10

    Google Scholar 

  26. de Lima CR, Paulino GH (2019) Auxetic structure design using compliant mechanisms: a topology optimization approach with polygonal finite elements. Adv Eng Softw 129:69–80. https://doi.org/10.1016/j.advengsoft.2018.12.002

    Article  Google Scholar 

  27. Alonso C, Ansola R, Querin OM (2014) Topology synthesis of multi-input–multi-output compliant mechanisms. Adv Eng Softw 76:125–132. https://doi.org/10.1016/j.advengsoft.2014.05.008

    Article  Google Scholar 

  28. Huang X, Xie YM (2010) Evolutionary topology optimization of geometrically and materially nonlinear structures under prescribed design load. Struct Eng Mech 34(5):581–595. https://doi.org/10.12989/sem.2010.34.5.581

    Article  Google Scholar 

  29. Yi J, Rong J, Zeng T, Huang X (2013) A topology optimization method of multiple load cases and constraints based on element independent nodal density. Struct Eng Mech 45(6):759–777. https://doi.org/10.12989/sem.2013.45.6.759

    Article  Google Scholar 

  30. Nguyena XH, Lee J (2015) Sizing, shape and topology optimization of trusses with energy approach. Struct Eng Mech 56(1):107–121. https://doi.org/10.12989/sem.2015.56.1.107

    Article  Google Scholar 

  31. da Silva GA, Beck AT, Sigmund O (2020) Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity. Comput Methods Appl Mech Eng 365:112972. https://doi.org/10.1016/j.cma.2020.112972

    Article  MathSciNet  MATH  Google Scholar 

  32. Pinskier J, Shirinzadeh B, Ghafarian M, Das TK, Al-Jodah A, Nowell R (2020) Topology optimization of stiffness constrained flexure-hinges for precision and range maximization. Mech Mach Theory 150:103874. https://doi.org/10.1016/j.mechmachtheory.2020.103874

    Article  Google Scholar 

  33. Liu M, Zhan J, Zhu B, Zhang X (2020) Topology optimization of compliant mechanism considering actual output displacement using adaptive output spring stiffness. Mech Mach Theory 146:103728. https://doi.org/10.1016/j.mechmachtheory.2019.103728

    Article  Google Scholar 

  34. Swartz KE, James KA (2019) Gaussian layer connectivity parameterization: a new approach to topology optimization of multi-body mechanisms. Comput Aided Des 115:42–51. https://doi.org/10.1016/j.cad.2019.05.008

    Article  MathSciNet  Google Scholar 

  35. Qiu L, Yue X, Zheng L, Li Y (2020) Design and analysis of porous flexure hinge based on dual-objective topology optimization of three-dimensional continuum. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02312-7

    Article  Google Scholar 

  36. Zhu B, Zhang X, Zhang H, Liang J, Zang H, Li H, Wang R (2020) Design of compliant mechanisms using continuum topology optimization: a review. Mech Mach Theory 143:103622. https://doi.org/10.1016/j.mechmachtheory.2019.103622

    Article  Google Scholar 

  37. Guest JK (2009) Topology optimization with multiple phase projection. Comput Methods Appl Mech Eng 199(1–4):123–135. https://doi.org/10.1016/j.cma.2009.09.023

    Article  MathSciNet  MATH  Google Scholar 

  38. Ghasemi H, Park HS, Rabczuk T (2018) A multi-material level set-based topology optimization of flexoelectric composites. Comput Methods Appl Mech Eng 332:47–62. https://doi.org/10.1016/j.cma.2017.12.005

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang W, Song J, Zhou J, Du Z, Zhu Y, Sun Z, Guo X (2018) Topology optimization with multiple materials via moving morphable component (MMC) method. Int J Numer Method Eng 113(11):1653–1675. https://doi.org/10.1002/nme.5714

    Article  MathSciNet  Google Scholar 

  40. Tavakoli R (2014) Multimaterial topology optimization by volume constrained Allen-Cahn system and regularized projected steepest descent method. Comput Methods Appl Mech Eng 276:534–565. https://doi.org/10.1016/j.cma.2014.04.005

    Article  MathSciNet  MATH  Google Scholar 

  41. Tong X, Ge W, Zhang Y, Zhao Z (2019) Topology design and analysis of compliant mechanisms with composite laminated plates. J Mech Sci Technol 33(2):613–620. https://doi.org/10.1007/s12206-019-0115-6

    Article  Google Scholar 

  42. Banh TT, Lee D (2018) Multi-material topology optimization of Reissner–Mindlin plates using MITC4. Steel Compos Struct 27(1):27–33. https://doi.org/10.12989/scs.2018.27.1.027

    Article  Google Scholar 

  43. Yoo J, Soh HJ (2005) An optimal design of magnetic actuators using topology optimization and the response surface method. Microsyst Technol 11(12):1252–1261. https://doi.org/10.1007/s00542-005-0610-9

    Article  Google Scholar 

  44. Pan LGGL, Lau GK, Du H, Ling SF (2002) On optimal design of HDD suspension using topology optimization. Microsyst Technol 9(1–2):137–146. https://doi.org/10.1007/s00542-002-0230-6

    Article  Google Scholar 

  45. Arora JS (2004) Introduction to optimum design. Elsevier, New York

    Book  Google Scholar 

  46. Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Meth Eng 86(6):765–781. https://doi.org/10.1002/nme.3072

    Article  MathSciNet  MATH  Google Scholar 

  47. Cardoso EL, da Silva GA, Beck AT (2019) Robust topology optimization of compliant mechanisms with uncertainties in output stiffness. Int J Numer Meth Eng 119(6):532–547. https://doi.org/10.1002/nme.6061

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Marzbanrad.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, P., Marzbanrad, J. Multi-material topology optimization of compliant mechanisms using regularized projected gradient approach. J Braz. Soc. Mech. Sci. Eng. 42, 457 (2020). https://doi.org/10.1007/s40430-020-02549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02549-2

Keywords

Navigation