Skip to main content
Log in

Robust and Local Optimal A Priori Error Estimates for Interface Problems with Low Regularity: Mixed Finite Element Approximations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

For elliptic interface problems in two- and three-dimensions with a possible very low regularity, this paper establishes a priori error estimates for the Raviart–Thomas and Brezzi–Douglas–Marini mixed finite element approximations. These estimates are robust with respect to the diffusion coefficient and optimal with respect to the local regularity of the solution. Several versions of the robust best approximations of the flux and the potential approximations are obtained. These robust and local optimal a priori estimates provide guidance for constructing robust a posteriori error estimates and adaptive methods for the mixed approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth, M.: A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements. SIAM J. Sci. Comput. 30(1), 189–204 (2007)

    Article  MathSciNet  Google Scholar 

  2. Arbogast, T., Chen, Z.: On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comp. 64(211), 943–972 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comp. 35, 1039–1062 (1980)

    Article  MathSciNet  Google Scholar 

  4. Bernardi, C., Hecht, F.: Error indicators for the mortar finite element discretization of the Laplace equation. Math. Comp. 71, 1371–1403 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85(4), 579–608 (2000)

    Article  MathSciNet  Google Scholar 

  6. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Berlin (2013)

  7. Braess, D., Verfürth, R.: A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33, 2431–2444 (1996)

    Article  MathSciNet  Google Scholar 

  8. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  Google Scholar 

  9. Cai, D., Cai, Z., Zhang, S.: Robust equilibrated error estimator for diffusion problems: mixed finite elements in two dimensions. J. Sci. Comput. 83, 22 (2020). https://doi.org/10.1007/s10915-020-01199-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, Z., He, C., Zhang, S.: Discontinuous finite element methods for interface problems: robust a priori and a posteriori error estimates. SIAM J. Numer. Anal. 55(1), 400–418 (2017)

    Article  MathSciNet  Google Scholar 

  11. Cai, Z., He, C., Zhang, S.: Improved ZZ a posteriori error estimators for diffusion problems: conforming linear elements. Comput. Methods Appl. Mech. Eng. 313, 433–449 (2017)

    Article  MathSciNet  Google Scholar 

  12. Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal. 49(5), 1761–1787 (2011)

    Article  MathSciNet  Google Scholar 

  13. Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47(3), 2132–2156 (2009)

    Article  MathSciNet  Google Scholar 

  14. Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: mixed and nonconforming elements. SIAM J. Numer. Anal 48(1), 30–52 (2010)

    Article  MathSciNet  Google Scholar 

  15. Cai, Z., Zhang, S.: Robust equilibrated residual error estimator for diffusion problems: conforming elements. SIAM J. Numer. Anal 50(1), 151–170 (2012)

    Article  MathSciNet  Google Scholar 

  16. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978, Reprinted as “SIAM Classics in Applied Mathematics”, No. 40, SIAM, Philadelphia (2002)

  17. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 2, 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Douglas, J., Roberts, J.E.: Mixed finite element methods for second order elliptic problems. Mat. Appli. Comput. 1(1), 91–103 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Dryja, M., Sarkis, M.V., Widlund, O.B.: Multilevel Schwartz method for elliptic problems with discontinuous in three dimensions. Numer. Math. 72, 313–348 (1996)

    Article  MathSciNet  Google Scholar 

  20. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34(150), 441–463 (1980)

    Article  MathSciNet  Google Scholar 

  21. Gatica, G.: A Simple Introduction to the Mixed Finite Element Method: Theory and Applications, SpringerBriefs in Mathematics. Springer, Berlin (2014)

    Book  Google Scholar 

  22. Girault, G., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations Theory and Algorithms. Springer, Berlin (1986)

    Book  Google Scholar 

  23. Kellogg, R.B.: On the Poisson equation with intersecting interfaces. Appl. Anal. 4, 101–129 (1975)

    Article  MathSciNet  Google Scholar 

  24. Kim, K.Y.: A posteriori error analysis for locally conservative mixed methods. Math. Comput. 76(257), 43–66 (2007)

    Article  MathSciNet  Google Scholar 

  25. Lovadina, C., Stenberg, R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comp. 75(256), 1659–1674 (2006)

    Article  MathSciNet  Google Scholar 

  26. Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Bertoluzza, S., Nochetto, R.H., Quarteroni, A., Siebert, K.G., Veeser, A. (eds.) Multiscale and Adaptivity: Modeling, Numerics and Applications. Lecture Notes in Mathematics, vol. 2040. Springer, Berlin, pp. 125–225 (2012)

  27. Roberts, J.E., Thomas, J.-M.: Mixed and hybrid methods. In: Lions, J.-L., Ciarlet, P.G. (eds.) Handbook of Numerical Analysis Vol. II, Finite Element Methods (Part 1). Elsevier Science Publishers B.V. (North Holland), Amsterdam, pp. 523–639 (1991)

  28. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  29. Vohralik, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection–diffusion–reaction equations. SIAM J. Numer. Anal. 45(4), 1570–1599 (2007)

    Article  MathSciNet  Google Scholar 

  30. Vohralik, M.: Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods. Math. Comp. 79(272), 2001–2032 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by Hong Kong Research Grants Council under the GRF Grant Project No. CityU 11305319.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S. Robust and Local Optimal A Priori Error Estimates for Interface Problems with Low Regularity: Mixed Finite Element Approximations. J Sci Comput 84, 40 (2020). https://doi.org/10.1007/s10915-020-01284-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01284-z

Keywords

Navigation