Skip to main content
Log in

Synthesis of nano-ZIF-8@chitosan microspheres and its rapid removal of p-hydroxybenzoic acid from the agro-industry and preservatives

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

p-Hydroxybenzoic acid is an emerging contaminant because it has multiple sources such as the hydrolysis of methylparaben, ethylparaben and propylparaben used widely as preservatives in food and drinks, and as well as from the agro-industrial wastewaters. In this study, the nano-ZIF-8@chitosan microspheres (ZIF-8@CSM) were fabricated via the combination of inverse emulsion method and in-situ growth method. The performance of ZIF-8@CSM for the adsorption of p-hydroxybenzoic acid from aqueous solution was studied. The adsorption kinetics showed that the adsorption rapidly reached the equilibrium about 30 s. The equilibrium data were well described by the Langmuir isothermal model and the estimated maximum adsorption capacity was 128.70 mg/g. The thermodynamics analysis indicated negative free energy, enthalpy, and entropy changes suggesting that the adsorption process was spontaneous and exothermic. ZIF-8@CSM is promising to be used as a good adsorption material to remove p-hydroxybenzoic acid rapidly from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.Z. Kashani, S.M. Ghoreishi, A. Khoobi, Mater. Sci. Eng. C 94, 45–55 (2019)

    CAS  Google Scholar 

  2. H.M. Kang, M.S. Kim, U.K. Hwang et al., Chemosphere 226, 388–394 (2019)

    CAS  PubMed  Google Scholar 

  3. S. Tabassum, O. Sulaiman, M. Ibrahim et al., J. Clean. Prod. 25, 68–72 (2012)

    CAS  Google Scholar 

  4. C.M. López-Ortiz, N. Boluda-Botella, D. Prats-Rico et al., J. Hydrol. 557, 335–347 (2018)

    Google Scholar 

  5. A.G. Karunanayake, O.A. Todd, M.L. Crowley et al., Chem. Eng. J. 319, 75–88 (2017)

    CAS  Google Scholar 

  6. J. Dai, X. Xiao, S. Duan et al., Chem. Eng. J. 331, 64–74 (2018)

    CAS  Google Scholar 

  7. R.M. Baena-Nogueras, E. Gonzalez-Mazo, P.A. Lara-Martin, Sci. Total Environ. 590–591, 643–654 (2017)

    PubMed  Google Scholar 

  8. M. Martín-Sómer, C. Pablos, A. de Diego et al., Chem. Eng. J. 366, 449–459 (2019)

    Google Scholar 

  9. R. Zhang, T. Meng, C.H. Huang et al., Environ. Sci. Technol. 52, 7833–7841 (2018)

    CAS  PubMed  Google Scholar 

  10. H. Zhou, J. Liu, H. Xia et al., Chem. Eng. J. 269, 245–254 (2015)

    CAS  Google Scholar 

  11. S. Shanmuganathan, M.A.H. Johir, T.V. Nguyen et al., J. Membr. Sci. 476, 1–9 (2015)

    CAS  Google Scholar 

  12. S. Zhuang, Y. Liu, J. Wang, J. Hazard. Mater. 383, 121126 (2020)

    CAS  PubMed  Google Scholar 

  13. K. Delhiraja, K. Vellingiri, D.W. Boukhvalov et al., Ind. Eng. Chem. Res. 58, 2899–2913 (2019)

    CAS  Google Scholar 

  14. S. Ravi, Y. Choi, J.K. Choe, Chem. Eng. J. 379, 122290 (2020)

    CAS  Google Scholar 

  15. X. Wang, K. Zhao, B. Yang et al., Chem. Eng. J. 306, 452–459 (2016)

    CAS  Google Scholar 

  16. M. Meng, Y. Feng, M. Zhang et al., Chem. Eng. J. 225, 331–339 (2013)

    CAS  Google Scholar 

  17. M. Vakili, A. Mojiri, T. Kindaichi et al., J. Environ. Manage. 250, 109434 (2019)

    CAS  PubMed  Google Scholar 

  18. Y. Pi, X. Li, Q. Xia et al., Chem. Eng. J. 337, 351–371 (2018)

    CAS  Google Scholar 

  19. M. Meng, Y. Feng, M. Zhang et al., Chem. Eng. J. 231, 132–145 (2013)

    CAS  Google Scholar 

  20. N. Zhuo, Y. Lan, W. Yang et al., Sep. Purif. Technol. 177, 272–280 (2017)

    CAS  Google Scholar 

  21. S. Dhaka, R. Kumar, A. Deep et al., Coord. Chem. Rev. 380, 330–352 (2019)

    CAS  Google Scholar 

  22. D. Ragab, H.G. Gomaa, R. Sabouni et al., Chem. Eng. J. 300, 273–279 (2016)

    CAS  Google Scholar 

  23. Y. Wang, Q. Dang, C. Liu et al., ACS Appl. Mater. Inter. 10, 40302–40316 (2018)

    CAS  Google Scholar 

  24. G.Z. Kyzas, D.N. Bikiaris, M. Seredych et al., Bioresour. Technol. 152, 399–406 (2014)

    CAS  PubMed  Google Scholar 

  25. X. Zou, X. Zhao, L. Ye et al., J. Ind. Eng. Chem. 21, 1389–1397 (2015)

    CAS  Google Scholar 

  26. N. Wang, X. Xu, H. Li et al., Ind. Eng. Chem. Res. 55, 12222–12231 (2016)

    CAS  Google Scholar 

  27. H.F. Wang, Y.S. Wang, A.Z. Jia et al., Catal. Sci. Technol. 7, 5572–5584 (2017)

    Google Scholar 

  28. Q. Guo, C. Chen, L. Zhou et al., Micropor. Mesopor. Mater. 261, 79–87 (2018)

    CAS  Google Scholar 

  29. X. Dai, X. Li, M. Zhang et al., ACS Omega 3, 6860–6866 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Bhattacharyya, S.H. Pang, M.R. Dutzer et al., J. Phys. Chem. C 120, 27221–27229 (2016)

    CAS  Google Scholar 

  31. X. Liu, J. Zhang, Y. Dong et al., New J. Chem. 42, 12180–12187 (2018)

    CAS  Google Scholar 

  32. M. Jian, B. Liu, G. Zhang et al., Colloid. Surface. A 465, 67–76 (2015)

    CAS  Google Scholar 

  33. N. Wang, Z. Xu, W. Xu et al., Chem. Eng. J. 347, 514–524 (2018)

    CAS  Google Scholar 

  34. J. He, Y. Lu, G. Luo, Chem. Eng. J. 244, 202–208 (2014)

    CAS  Google Scholar 

  35. L. Zhou, N. Li, G. Owens et al., Chem. Eng. J. 362, 628–637 (2019)

    CAS  Google Scholar 

  36. S. Pu, Y. Hou, C. Yan et al., ACS Sustain. Chem. Eng. 6, 16754–16765 (2018)

    CAS  Google Scholar 

  37. A. Behvandi, A.A. Safekordi, F. Khorasheh, J. Porous Mater. 24, 165–178 (2016)

    Google Scholar 

  38. H. Shi, W. Li, L. Zhong et al., Ind. Eng. Chem. Res. 53, 1108–1118 (2014)

    CAS  Google Scholar 

  39. Y. Xie, S. Li, G. Liu et al., Chem. Eng. J. 192, 269–275 (2012)

    CAS  Google Scholar 

  40. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2–10 (2010)

    CAS  Google Scholar 

  41. W. Liu, J. Zhang, C. Zhang et al., Chem. Eng. J. 171, 431–438 (2011)

    CAS  Google Scholar 

  42. R.I. Yousef, B. El-Eswed, A.a.H. Al-Muhtaseb, Chem. Eng. J. 171, 1143–1149 (2011)

    CAS  Google Scholar 

  43. E.S. Pouya, H. Abolghasemi, M. Esmaieli et al., J. Ind. Eng. Chem. 31, 199–215 (2015)

    CAS  Google Scholar 

  44. I.A. Tan, A.L. Ahmad, B.H. Hameed, J. Hazard. Mater. 154, 337–346 (2008)

    CAS  PubMed  Google Scholar 

  45. J. Li, J. Jiang, S.Y. Pang et al., Sci. Total Environ. 661, 670–677 (2019)

    CAS  PubMed  Google Scholar 

  46. C.F. Whitehead, R.F. Carbonaro, A.T. Stone, Aquat. Geochem. 21, 99–121 (2014)

    Google Scholar 

  47. I. Ahmed, S.H. Jhung, Chem. Eng. J. 310, 197–215 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Support Program of Jiangsu Province of China (BE 2013714) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinlong Wang or Leqin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Wang, Y., Li, H. et al. Synthesis of nano-ZIF-8@chitosan microspheres and its rapid removal of p-hydroxybenzoic acid from the agro-industry and preservatives. J Porous Mater 28, 29–38 (2021). https://doi.org/10.1007/s10934-020-00966-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00966-1

Keywords

Navigation