Skip to main content
Log in

A nonparabolic conduction band study of circular quantum dot optical properties: modeling of surface roughness by using Koch snowflakes

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, we investigate the optical properties of single and multiple quantum dots (QDs) based on AlxGa1-xAs/GaAs with two Koch snowflake-shaped and circular geometries. The idea is to determine the impact of the surface roughness of the circular QDs on the mentioned optical properties. This is an important issue in designing optoelectronic devices (e.g., photodetectors or light-emitting systems) because the position and magnitude of the absorption coefficient play important roles in devising them. We have also studied the effects of the conduction band nonparabolicity, QD size, number of QDs, and composition parameter x on the absorption coefficient. For this purpose, we have used an efficient finite difference method to solve the two-dimensional Schrodinger equation. The computational algorithm of the Koch snowflake-shaped QD production is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adachi S (1985) GaAs, AlAs, and AlxGa1-xAs: material parameters for use in research and device applications. J Appl Phys 58:R1–R29

    CAS  Google Scholar 

  • Alemany MMG, Tortajada L, Huang X, Tiago ML, Gallego LJ, Chelikowsky JR (2008) Role of dimensionality and quantum confinement in p-type semiconductor indium phosphide quantum dots. Phys Rev B 78:233101

    Google Scholar 

  • Allain C, Cloitre M (1986) Optical diffraction on fractals. Phys Rev B 33:3566–3569

    CAS  Google Scholar 

  • Amado M, Domınguez-Adame F, Diez E (2005) Multichannel model of magnetotunneling in disordered electron nanodevices. Physica B 369:293

    CAS  Google Scholar 

  • Amini M, Soleimani M, Ehsani MH (2017) Electronic and optical properties of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems. Superlattice Microst 112:680–687

    CAS  Google Scholar 

  • Anghinolfi L (2012) Self-organized arrays of gold nanoparticles: morphology and plasmonic properties. Springer Science & Business Media

  • Borri P, Langbein W, Hvam JM, Heinrichsdorff F, Mao M-H, Bimberg D (2000) Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE J Select Top Quant Electron 6:544

    CAS  Google Scholar 

  • Bose C, Midya K, Bose MK (2006) Effect of conduction band non-parabolicity on the donor states in GaAs-(Al, Ga)As spherical quantum dots. Phys E 33:116–119

    CAS  Google Scholar 

  • Bose MK, Midya K, Bose C (2007) Effect of polarization and self-energy on the ground donor state in the presence of conduction band nonparabolicity in GaAs-(Al, Ga)As spherical quantum dot. J Appl Phys 101:054315

    Google Scholar 

  • Cervenka J, Kosina H, Selberherr S, Zhang J, Hrauda N, Stangl J, Bauer G, Vastola G, Marzegalli A, Montalenti F, Miglio L (2011) Strained MOSFETs on ordered SiGe dots. Solid State Electron 65-66:81–87

    CAS  Google Scholar 

  • Chen Z, Shek CH, Wu CML, Lai JKL (2014) Advances in fractal germanium micro/nanoclusters induced by gold: microstructures and properties. J Nanosci Nanotechnol 14:1318–1337

    CAS  Google Scholar 

  • Dutta Gupta S (1998) Nonlinear optics of stratified media. Prog Opt XXXVIII(1):78

    Google Scholar 

  • Eah S-K (2011) A very large two-dimensional superlattice domain of monodisperse gold nanoparticles by self-assembly. J Mater Chem 21:16866

    CAS  Google Scholar 

  • Fang T-F, Wang S-J (2007) Cross correlations and shot noise in a Y-shaped quantum dot. J Phys Condens Matter 19:026204

    Google Scholar 

  • Fussell DP, Hughes S, Dignam MM (2008) Influence of fabrication disorder on the optical properties of coupled-cavity photonic crystal waveguides. Phys Rev B 78:144201

    Google Scholar 

  • Gerislioglu B, Ahmadivand A (2020) Functional charge transfer plasmon metadevices. Research 2020:9468692

    CAS  Google Scholar 

  • Gerislioglu B, Dong L, Ahmadivand A, Hu H, Nordlander P, Halas NJ (2020a) Monolithic metal dimer-on-film structure: new plasmonic properties introduced by the underlying metal. Nano Lett 20:2087–20493

    CAS  Google Scholar 

  • Gerislioglu B, Bakan G, Ahuja R, Adam J, Mishra YK, Ahmadivand A (2020b) The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Mater Today Physics 12:100178

    Google Scholar 

  • Gonzalez LR, Krupski J, Pietka M, Szwacka T (1999a) Effect of band nonparabolicity on mobility in a d-doped semiconductor. Phys Rev B 60:7768–7771

    CAS  Google Scholar 

  • Gonzalez LR, Krupski J, Pietka M, Szwacka T (1999b) Effect of band nonparabolicity on mobility in a d-doped semiconductor. Phys Rev B 60:7768–7771

    CAS  Google Scholar 

  • Hellström S, Chen Z-H, Fu Y, Qiu M, Soltanmoradi R, Wang Q, Andersson JY (2010) Increased photocurrent in quantum dot infrared photodetector by subwavelength hole array in metal thin film. Appl Phys Lett 96:231110

    Google Scholar 

  • Hentschel M, Valente DCB, Mucciolo ER, Baranger HU (2007) Improving intrinsic decoherence in multiple-quantum-dot charge qubits. Phys Rev B 76:235309

    Google Scholar 

  • Ibberson DJ, Bourdet L, Abadillo-Uriel JC, Ahmed I, Barraud S, Calderón MJ, Niquet Y-M, Gonzalez-Zalba MF (2018) Electric-field tuning of the valley splitting in silicon corner dots. Appl Phys Lett 113:053104

    Google Scholar 

  • Ji LW, Young SJ, Liu CH, Water W, Meen TH, Jywe WY (2008) Nitride-based light-emitter and photodiode dual function devices with InGaN/GaN multiple quantum dot structures. J Cryst Growth 310:2476–2479

    CAS  Google Scholar 

  • Jung K-H, Chang J-S, Kwon Y-S (2006) Two dimensional gold nanodot arrays prepared by using self-organized nanostructure. J Electr Eng Technol 1:246–250

    Google Scholar 

  • Kasapoglu E, Ungan F, Sari H, Sokmen I, Mora-Ramos ME, Duque CA (2014) Donor impurity states and related optical responses in triangular quantum dots under applied electric field. Superlattice Microst 73:171–184

    CAS  Google Scholar 

  • Kervan N, Altanhan T, Chatterjee A (2003) A variational approach with squeezed-states for the polaronic effects in quantum dots. Phys Lett A 315:280–287

    CAS  Google Scholar 

  • Khordada R (2012) Hydrogenic donor impurity in a cubic quantum dot: effect of position-dependent effective mass. Eur Phys J B 85:114

    Google Scholar 

  • Le K (2009) Finite element analysis of quantum states in layered quantum semiconductor structures with band nonparabolicity effect. Microw Opt Technol Lett 51:1–5

    Google Scholar 

  • Lin CY, Ho YK (2011) Photoionization cross sections of hydrogen impurities in spherical quantum dots using the finite-element discrete-variable representation. Phys Rev A 84:023407

    Google Scholar 

  • Linares PG, Martí A, Antolín E, Luque A (2011) III-V compound semiconductor screening for implementing quantum dot intermediate band solar cells. J Appl Phys 109:014313

    Google Scholar 

  • Liu CH, Xu BR (2008) Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot. Phys Lett A 372:888–892

    CAS  Google Scholar 

  • Liu L, Li Z, Hattori HT, Barbosa CL (2013) Sierpinski Gasket triangular quantum dot lasers, 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), Rio de Janeiro, p 1–4

  • Lu YW, Li LY, Liu JF (2018) Influence of surface roughness on strong light-matter interaction of a quantum emitter-metallic nanoparticle system. Sci Rep 8:7115

    Google Scholar 

  • Ma X, John S (2011) Optical pulse dynamics for quantum-dot logic operations in a photonic-crystal waveguide. Phys Rev A 84:053848

    Google Scholar 

  • Martinez A, Seoane N, Brown AR, Barker JR, Asenov A (2010) Variability in Si nanowire MOSFETs due to the combined effect of interface roughness and random dopants: a fully three-dimensional NEGF simulation study. IEEE Trans Electr Dev 57:1626–1635

    CAS  Google Scholar 

  • Nilsson HA, Thelander C, Fröberg LE, Wagner JB, Samuelson L (2006) Nanowire-based multiple quantum dot memory. Appl Phys Lett 89:163101

    Google Scholar 

  • Riffe DM (2002) Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements. J Opt Soc Am B 19:1092

    CAS  Google Scholar 

  • Rodrıguez AH, Ramırez HY (2008) Analytical calculation of eigen-energies for lens-shaped quantum dot with finite barriers. Eur Phys J B 66:235–238

    Google Scholar 

  • RVNMelnik1, Willatzen M (2004) Bandstructures of conical quantum dots with wetting layers. Nanotechnology 15:1

    Google Scholar 

  • Sabzevar M, Ehsani MH, Solaimani M, Ghorbani M (2019) Optical properties of a few semiconducting heterostructures in the presence of Rashba spin-orbit interactions: a two-dimensional finite-difference numerical approach. J Opt Soc Am B 36:1774

    Google Scholar 

  • Sankar P, Philip R (2018) Nonlinear optical properties of nanomaterials, “Characterization of Nanomaterials, Advances and Key Technologies Micro and Nano Technologies”, Chapter 11, p 301–334

  • Shokri AA, Ebrahiminejad ZH (2011) Spin-dependent tunneling through double-barrier quantum wells with random corrugation interfacial roughness. Phys E 43:1579–1584

    CAS  Google Scholar 

  • Solaimani M (2016) Optical absorption coefficint of GaN/AlN multi-shells quantum dots: optical intensity and magnetic field effects. Optik 127:3934–3939

    CAS  Google Scholar 

  • Solaimani M (2018) Intersubband optical properties of three electrons confined in multishell quantum dots: comparison of two semiconducting compounds. J Comput Electron 17:1135–1142

    CAS  Google Scholar 

  • Solaimani M, Lavaei L, Ghalandari M (2015) Intersubband optical properties of a two electron GaN/AlN constant total effective radius multi-shells quantum rings. Superlattice Microst 82:1–10

    CAS  Google Scholar 

  • Solaimani M, Ghalandari M, Lavaei L (2016) Donor impurity effects on optical properties of GaN/AlN constant total effective radius multishell quantum dots. J Opt Soc America B 33:420

    Google Scholar 

  • Tiutiunnyk A, Tulupenko V, Mora-Ramos ME, Kasapoglu E, Ungan F, Sari H, Sökmen I, Duque CA (2014) Electron-related optical responses in triangular quantum dots. Phys E 60:127–132

    CAS  Google Scholar 

  • van Veen E, Yuan S, Katsnelson MI, Polini M, Tomadin A (2016) Quantum transport in Sierpinski carpets. Phys Rev B 93:115428

    Google Scholar 

  • Vargas P, Altbir D (2000) Dipolar effects in multilayers with interface roughness. Phys Rev B 62:6337

    CAS  Google Scholar 

  • Vukovic N, Milanovic V, Radovanovi J (2014) Influence of nonparabolicity on electronic structure of quantum cascade laser. Phys Lett A 378:2222–2225

    CAS  Google Scholar 

  • Yazgan A, Kaya H, Cavdar IH (2015) Optically reconfigurable Sierpinski fractal antennas for RoF based communication systems. Telecommun Syst 59:453–461

    Google Scholar 

  • Yorulmaz M, Khatua S, Zijlstra P, Gaiduk A, Orrit M (2012) Luminescence quantum yield of single gold nanorods. Nano Lett 12:4385–4391

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solaimani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solaimani, M., Kenari, A.R. A nonparabolic conduction band study of circular quantum dot optical properties: modeling of surface roughness by using Koch snowflakes. J Nanopart Res 22, 242 (2020). https://doi.org/10.1007/s11051-020-04973-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04973-w

Keywords

Navigation