Skip to main content

Advertisement

Log in

Diversity of halophilic and halotolerant bacteria in the largest seasonal hypersaline lake (Aran-Bidgol-Iran)

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

In this study, the culturable halophilic and halotolerant bacterial diversity was determined in Aran-Bidgol as a thalassohaline seasonal hypersaline lake in Iran.

Methods

Thirty water, soil, sediments, coastal mud, multi-color brines and salt crystals samples were extracted and cultured using different media and incubation conditions. Totally 958 isolates were obtained and 87 isolates were selected for further studies, based on morphological, physiological and biochemical tests, representing different morphotypes.

Results

Based on 16S rRNA gene sequence analyses, the isolates exhibited 94.6–100% sequence similarity to the closest known species of the genera Bacillus, Halomonas, Oceanobacillus, Salinicoccus, Thalassobacillus, Ornithinibacillus, Halobacillus, Salicola, Virgibacillus, Aerococcus, Arthrobacter, Idiomarina, Paraliobacillus, Staphylococcus, Acinetobacter, Aneurinibacillus, Brevibacillus, Brevundimonas, Chromohalobacter, Gracilibacillus, Jeotgalicoccus, Kocuria, Marinilactibacillus, Marinobacter, Microbacterium, Paenibacillus, Paracoccus, Piscibacillus, Pseudomonas and Sediminibacillus and also, comparison of ARDRA patterns among the sequenced strains, using AluI, Bst UI and Hpa II enzymes showed that these patterns are in accordance with the phylogenetic position of these strains.

Conclusion

The PCR-RFLP analyses suggested that ARDRA possess a functional potential for distinguishing halophilic bacteria to be used for further studies in elementary steps of isolation to reduce the tedious duplication of isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oren A. Halophilic microorganisms and their environments. Kluwer Academic Publishers; 2002.

  2. Kushner D, Kamekura M. Physiology of halophilic eubacteria. In: Rodriguez-Valera F, editor. Halophilic bacteria. Florida: CRC Press; 1988. p. 109–40.

    Google Scholar 

  3. Oren A. Life at high salt concentrations. In: Stanley Falkow ER, editor. Karl-Heinz Schleifer, Erko Stackebrandt, Martin Dworkin, editor. The Prokaryotes: Ecophysiology and biochemistry: Springer; 2006. p. 263–82.

    Google Scholar 

  4. Ventosa A, Nieto J, Oren A. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev. 1998;62(2):504–44.

    Article  CAS  Google Scholar 

  5. Oren A, Stambler N, Dubinsky Z. On the red coloration of saltern crystallizer ponds. Int J Salt Lake Res. 1992;1(2):77–89.

    Article  Google Scholar 

  6. Oren A, Dubinsky Z. On the red coloration of saltern crystallizer ponds. II. Additional evidence for the contribution of halobacterial pigments. Int J Salt Lake Res. 1994;3(1):9–13.

    Article  Google Scholar 

  7. Alain K, Querellou J. Cultivating the uncultured: limits, advances and future challenges. Extremophiles. 2009;13(4):583–94.

    Article  Google Scholar 

  8. Babavalian H, Amoozegar M, Pourbabaei A. Isolation, identification and characterization of moderately halophilic bacteria producing hydrolytic enzymes from Aran-Bidgol salt Lake. Iranian J Biol. 2009;22(1):24–45.

    Google Scholar 

  9. Atlas R. Handbook of microbiological media. Boca Raton (Florida): CRC press; 2004.

    Book  Google Scholar 

  10. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. Microbiology. 1982;128(9):1959–68.

    Article  Google Scholar 

  11. Janssen P, Yates P, Grinton B, Taylor P, Sait M. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol. 2002;68(5):2391–6.

    Article  CAS  Google Scholar 

  12. Wilson K. Preparation of genomic DNA from bacteria. In: Ausubel FMBR, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, editors. Current protocols in molecular biology. New York: John Wiley & Sons; 1987.

    Google Scholar 

  13. Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876–82.

    Article  CAS  Google Scholar 

  14. Kashi FJ, Owlia P, Amoozegar MA, Yakhchali B, Kazemi B. Diversity of cultivable microorganisms in the eastern part of Urmia salt lake, Iran. J Microbiol Biotechnol Food Sci. 2020;9(4):36–43.

    Google Scholar 

  15. Garcia-Vallvé S, Palau J, Romeu A. Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Mol Biol Evol. 1999;16(9):1125–34.

    Article  Google Scholar 

  16. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24(8):1596–9.

    Article  CAS  Google Scholar 

  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.

    CAS  Google Scholar 

  18. Fitch W. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20(4):406–16.

    Article  Google Scholar 

  19. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–96.

    Article  CAS  Google Scholar 

  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–91.

    Article  Google Scholar 

  21. Maturrano L, Valens-Vadell M, Rossello-Mora R, Anton J. Salicola marasensis gen. nov., sp. nov., an extremely halophilic bacterium isolated from the Maras solar salterns in Peru. Int J Syst Evol Microbiol. 2006;56(7):1685.

    Article  CAS  Google Scholar 

  22. Rohban R, Amoozegar M, Ventosa A. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake. Iran J Ind Microbiol Biotechnol. 2009;36:333–40.

    Article  CAS  Google Scholar 

  23. Ventosa A. Unusual micro-organisms from unusual habitats: hypersaline environments. In: Logan N. A. L-S, H. M., Oyston, P. C. F., editor. Prokaryotic Diversity Mechanisms and Significance. Society for General Microbiology Symposia: Cambridge University Press; 2006. p. 223–54.

  24. Gunde-Cimerman N, Oren A, Plemenitaš A. Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Dordrecht, Netherlands: Kluwer Academic Pub; 2005.

    Book  Google Scholar 

  25. Huang C, Garcia J, Patel B, Cayol J, Baresi L, Mah R. Salinivibrio costicola subsp. vallismortis subsp. nov., a halotolerant facultative anaerobe from Death Valley, and emended description of Salinivibrio costicola. Int J Syst Evol Microbiol. 2000;50(2):615–22.

    Article  CAS  Google Scholar 

  26. Marquez M, Ventosa A, Ruiz-Berraquero F. A taxonomic study of heterotrophic halophilic and non-halophilic bacteria from a solar saltern. J Gen Microbiol. 1987;133(1):45–56.

    Google Scholar 

  27. Martinez-Canovas M, Bejar V, Martinez-Checa F, Paez R, Quesada E. Idiomarina fontislapidosi sp. nov. and Idiomarina ramblicola sp. nov., isolated from inland hypersaline habitats in Spain. Int J Syst Evol Microbiol. 2004;54(5):1793.

    Article  CAS  Google Scholar 

  28. Donachie S, Hou S, Gregory T, Malahoff A, Alam M. Idiomarina loihiensis sp. nov., a halophilic gamma-Proteobacterium from the Lo'ihi submarine volcano, Hawai'i. Int J Syst Evol Microbiol. 2003;53(6):1873–9.

    Article  CAS  Google Scholar 

  29. Yoon J, Jung S, Jung Y, Oh T. Idiomarina salinarum sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol. 2007;57(11):2503–6.

    Article  CAS  Google Scholar 

  30. Arens M. Methods for subtyping and molecular comparison of human viral genomes. Clin Microbiol Rev. 1999;12(4):612–26.

    Article  CAS  Google Scholar 

  31. Yang Z, Huang J, Yao Y. Auto-screening of restriction endonucleases for PCR-RFLP identification of fungal species, using Pleurotus as an example. Appl Environ Microbiol. 2007:842–745.

  32. Liu W, Marsh T, Cheng H, Forney L. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol. 1997;63(11):4516–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the research council of the University of Tehran. This work was supported by a grant from the Spanish Ministery of Econmoy and Copetitiveness (MINECO) throurgh  project CGL2017-83385-P and the Junta de Andalucia (Spain) (Bio-213, US-1263771), all including European (FEDER) funds.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Ali Amoozegar and Antonio Ventosa planned the experiments. Maryam Didari, Maryam Bagheri, Dr. Saied Bouzari, Hamid Babavalian, Hamid Tebyanian and Mehdi Hassanshahian carried out the experimental work and prepared the draft manuscript. All authors revised and contributed to the preparation of the final manuscript.

Corresponding author

Correspondence to Mohammad Ali Amoozegar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animal experiments by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didari, M., Bagheri, M., Amoozegar, M.A. et al. Diversity of halophilic and halotolerant bacteria in the largest seasonal hypersaline lake (Aran-Bidgol-Iran). J Environ Health Sci Engineer 18, 961–971 (2020). https://doi.org/10.1007/s40201-020-00519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00519-3

Keywords

Navigation