Skip to main content

Advertisement

Log in

Optimization and Thermal Analysis of Fe2O3 Nanoparticles Embedded Myristic Acid-Lauric Acid Phase Change Material

  • Asian Consortium ACCMS–International Conference ICMG 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Phase change materials (PCM) are commonly utilized materials in latent heat energy storage systems. In the present study, Fe2O3 was incorporated into the eutectic mixture of myristic acid and lauric acid. The composites were prepared by a melting and mixing method. Fourier transform infrared spectroscopy and dynamic light scattering results revealed the physicochemical properties of the eutectic mixture. Thermal analysis was performed on the optimized PCM mixtures with various Fe2O3 loadings of 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, and 5 wt.%. It is observed from the experimental results that the duration of melting and cooling rates for PCM composite with 4 wt.% Fe2O3 loadings was significantly improved, i.e., 85.72% and 78.31%, respectively, when compared to its pristine counterparts. These enhanced heating/cooling rates and thermal conductivity are attributed to the optimized impregnation of 4 wt.% Fe2O3 nanostructures into the eutectic mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Alkan, A. Sarı, and A. Karaipekli, Energy Convers. Manag. 52, 687 (2011).

    Article  CAS  Google Scholar 

  2. A.M. Khudhair and M.M. Farid, Energy Convers. Manag. 45, 263 (2004).

    Article  CAS  Google Scholar 

  3. M. Kenisarin and K. Mahkamov, Renew. Sust. Energy Rev. 11, 1913 (2007).

    Article  CAS  Google Scholar 

  4. A.M. Borreguero, M.V. Sánchez, M.L. Sánchez-Silva, M.S. Carmona, and J.F. Rodríguez, in IIR Proceedings Series ‘Refrigeration Science and Technology (2010), pp. 29–36.

  5. X. Zhang, S. Yu, M. Yu, and Y. Lin, Y. Appl. Therm. Eng. 31, 3736 (2011).

    Article  CAS  Google Scholar 

  6. A. Karaipekli and A. Sari, Sol. Energy 83, 323 (2009).

    Article  CAS  Google Scholar 

  7. A. Sari, Appl. Therm. Eng. 25, 2100 (2005).

    Article  CAS  Google Scholar 

  8. J.M. Khodadadi and S.F. Hosseinizadeh, Int. Commun. Heat Mass Transf. 34, 534 (2007).

    Article  CAS  Google Scholar 

  9. M. Sheikholeslami, R. Haq, A. Shafee, and Z. Li, Int. J. Heat Mass Transf. 130, 322 (2019).

    Article  Google Scholar 

  10. J. Wang, H. Xie, Z. Guo, L. Guan, and Y. Li, Appl. Therm. Eng. 73, 1541 (2014).

    Article  CAS  Google Scholar 

  11. S. Santhosh and A.A. Madhavan, in 2019 Advances in Science and Engineering Technology International Conferences (ASET) (2019), pp. 1–5.

  12. W. Jifen, X. Huaqing, and Y. Li, J. Nanosci. Nanotechnol. 15, 3276 (2015).

    Article  Google Scholar 

  13. A.B. Rezaie and M. Montazer, Appl. Energy 262, 114501 (2020).

    Article  Google Scholar 

  14. J. Singh, J.R. Vennapusa, and S. Chattopadhyay, Carbohydr. Polym. 229, 115531 (2020).

    Article  CAS  Google Scholar 

  15. M. Zhao, X. Zhang, and X. Kong, Renew. Energy 147, 374 (2020).

    Article  CAS  Google Scholar 

  16. Y. Fang, L. Huang, X. Liang, S. Wang, H. Wei, X. Gao, and Z. Zhang, Sol. Energy Mater. Sol. Cells 206, 110257 (2020).

    Article  CAS  Google Scholar 

  17. J. Serna, M. Ocana, and J.E. Iglesias, J. Phys. C, Solid State Phys. 20, 473 (1987).

    Article  CAS  Google Scholar 

  18. Y. Wang, A. Muramatsu, and T. Sugimoto, Colloids Surf. A, Physicochem. Eng. Aspects 134, 281 (1998).

    Article  CAS  Google Scholar 

  19. R. Sharma, S. Lamba, and S.A. Poorni, J. Phys. D Appl. Phys. 38, 3354 (2005).

    Article  CAS  Google Scholar 

  20. R. Suresh, R. Prabu, A. Vijayaraj, K. Giribabu, A. Stephen, and V. Narayanan, Synth. React. Inorg. Metal-Org. Nano-Met. Chem. 42, 303 (2012).

    Article  CAS  Google Scholar 

  21. M. Kamimoto, T. Tanaka, T. Tani, and T. Horigome, Sol. Energy 24, 581 (1980).

    Article  CAS  Google Scholar 

  22. S.I. Golestaneh, G. Karimi, A. Babapoor, and F. Torabi, Appl. Energy 212, 552 (2018).

    Article  CAS  Google Scholar 

  23. R. Sharma, P. Ganesan, V. Tyagi, H. Metselaar, and S. Sandaran, Appl. Therm. Eng. 99, 1254 (2016).

    Article  CAS  Google Scholar 

  24. S. Harish, D. Orejon, Y. Takata, and M. Kohno, Appl. Therm. Eng. 114, 1240 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the administration and management of Amity University Dubai, UAE, for providing infrastructure and other support for conducting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha Anish Madhavan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satish, M., Santhosh, S., Yadav, A. et al. Optimization and Thermal Analysis of Fe2O3 Nanoparticles Embedded Myristic Acid-Lauric Acid Phase Change Material. J. Electron. Mater. 50, 1608–1614 (2021). https://doi.org/10.1007/s11664-020-08366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08366-6

Keywords

Navigation