Skip to main content
Log in

Effects of Li2CO3 and CuO as Composite Sintering Aids on the Structure, Piezoelectric Properties, and Temperature Stability of BiFeO3-BaTiO3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to reduce the sintering temperature of ceramics, the effects of binary composite sintering aids, Li2CO3 and CuO, on the sintering temperature and properties of 0.7BiFeO3-0.3BaTiO3-0.0035MnCO3 + 0.002Li2CO3 + xCuO (BF-BT-LC + xCuO) ceramics were studied by traditional solid-state sintering. The results show that the sintering liquid phase can effectively promote the sintering of BF-BT-LC + xCuO ceramics by adding a certain amount of Li2CO3 and changing the amount of CuO. The samples sintered at 930°C/2 h with 0.4 mol.% CuO get a piezoelectric constant d33 = 168 pC/N, an electromechanical coupling coefficient kp = 0.302, and a mechanical quality factor Qm = 31.207. The addition of CuO was conducive to obtaining stable BF-BT-LC + xCuO piezoelectric ceramics. We conclude that the composite sintering aids, Li2CO3 and CuO, can effectively promote the sintering of BF-BT-LC + xCuO, which is beneficial to obtain BF-BT-LC + xCuO ceramics with a wide sintering temperature range and stable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Zhu, B.P. Zhang, S. Li, L. Zhao, N. Wang, and X.C. Shi, J. Alloys Compd. 664, 602 (2016).

    Article  CAS  Google Scholar 

  2. B. Jaffe, W.R. Cook Jr, and H. Jaffe, Piezoelectric Ceramics, Vol. 185 (New York: Academic, 1971).

    Google Scholar 

  3. E. Cross, Nature 432, 24 (2004).

    Article  CAS  Google Scholar 

  4. R.C. Turner, P.A. Fuierer, R.E. Newnham, and T.R. Shrout, Appl. Acoust. 41, 299 (1994).

    Article  Google Scholar 

  5. C.S. Chou, J.H. Chen, R.Y. Yang, and S.W. Chou, Powder Technol. 202, 39 (2010).

    Article  CAS  Google Scholar 

  6. B. Wang, X. Wu, W. Ren, and Z.G. Ye, IEEE Trans. Ultrasonics Ferroelectr. 62, 1016 (2015).

    Article  Google Scholar 

  7. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).

    Article  CAS  Google Scholar 

  8. Y.J. Lee, J.S. Kim, S.H. Han, H.W. Kang, H.G. Lee, and C.I.I. Cheon, J. Korean Phys. Soc. 61, 947 (2012).

    Article  CAS  Google Scholar 

  9. S. Chandarak, A. Ngamjarurojana, S. Srilomsak, P. Laoratanakul, S. Rujirawat, and R. Yimnirun, Ferroelectrics 410, 75 (2011).

    Article  Google Scholar 

  10. W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).

    Article  CAS  Google Scholar 

  11. Z. Liu, T. Zheng, C.L. Zhao, and J.G. Wu, J. Mater. Sci. Mater. Electron. 28, 13076 (2017).

    Article  CAS  Google Scholar 

  12. W.L. Zhou, H.M. Deng, L. Yu, D.X. Yang, and J.H. Chu, Ceram. Int. 41, 13389 (2015).

    Article  CAS  Google Scholar 

  13. H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, W.Z. Li, and H. Wang, J. Eur. Ceram. Soc. 33, 1177 (2013).

    Article  CAS  Google Scholar 

  14. Z.H. Dai, L. Liu, G.B. Ying, M. Yuan, and X.B. Ren, J. Magn. Magn. Mater. 434, 10 (2017).

    Article  CAS  Google Scholar 

  15. S.E. Park, S. Wada, L.E. Cross, and T.R. Shrout, J. Appl. Phys. 86, 2746 (1999).

    Article  CAS  Google Scholar 

  16. Z.M. Dang, Y. Shen, and C.W. Nan, Appl. Phys. Lett. 81, 4814 (2002).

    Article  CAS  Google Scholar 

  17. S.B. Guan, H.B. Yang, Y.Z. Zhao, and R. Zhang, J. Alloys Compd. 735, 386 (2018).

    Article  CAS  Google Scholar 

  18. W. Jo, J.B. Ollagnier, J.L. Park, E.M. Anton, O.J. Kwon, C. Park, H.H. Seo, J.S. Lee, E. Erdem, R.A. Eichel, and J. Rodel, J. Eur. Ceram. Soc. 31, 2107 (2011).

    Article  CAS  Google Scholar 

  19. Y.J. Zhao, Y.Z. Zhao, R.X. Huang, R.Z. Liu, and H.P. Zhou, J. Eur. Ceram. Soc. 31, 1939 (2011).

    Article  CAS  Google Scholar 

  20. Serhiy O. Leontsevw and Richard E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009).

    Article  Google Scholar 

  21. S.B. Guan, H.B. Yang, and G.C. Chen, RZhang. J. Electron. Mater. 47, 2625 (2018).

    Article  CAS  Google Scholar 

  22. E. Li, H. Kakemoto, S. Wada, and T. Tsurum, J. Am. Ceram. Soc. 90, 1787 (2007).

    Article  CAS  Google Scholar 

  23. S.J. Park, H.Y. Park, K.H. Cho, S. Nahm, H.G. Lee, D.H. Kim, and B.H. Choi, Mater. Res. Bull. 43, 3580 (2008).

    Article  CAS  Google Scholar 

  24. H.Y. Park, C.W. Ahn, K.H. Cho, S. Nahm, H.G. Lee, H.W. Kang, Dh Kim, and K.S. Park, J. Am. Ceram. Soc. 90, 4066 (2007).

    CAS  Google Scholar 

  25. C.H. Nam, H.Y. Park, I.T. Seo, J.H. Choi, S. Nahm, and H.G. Lee, J. Alloys Compd. 509, 3686 (2011).

    Article  CAS  Google Scholar 

  26. K. Wang and J.F. Li, Adv. Funct. Mater. 20, 1924 (2010).

    Article  CAS  Google Scholar 

  27. Z.Y. Shen, Y.H. Zhen, K. Wang, and J.F. Li, J. Am. Ceram. Soc. 92, 1748 (2009).

    Article  CAS  Google Scholar 

  28. Z.Y. Shen, Y. Xu, and J.F. Li, Ceram. Int. 38S, S331 (2012).

    Article  Google Scholar 

  29. T. Hayashi, T. Hasegawa, J. Tomizawa, and Y. Akiyama, Jpn. J. Appl. Phys. 42, 6074 (2003).

    Article  CAS  Google Scholar 

  30. W.W. Gao, J. Lv, and X.J. Lou, J. Am. Ceram. Soc. 101, 3383 (2018).

    Article  CAS  Google Scholar 

  31. E. Elayaperumal and M. Malathi, Ceram. Int. 42, 5830 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (2017YFB0310400) and the National Natural Science Foundation of China (11364008) and the Natural Science Foundation of Guangxi (2014GXNSFAA118311) and Guangxi Key Laboratory of Information Materials and Graduate Research and Innovation Projects of Jiangsu Province (CN) (KYCX19_1588).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabin Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Yang, H., Qiao, G. et al. Effects of Li2CO3 and CuO as Composite Sintering Aids on the Structure, Piezoelectric Properties, and Temperature Stability of BiFeO3-BaTiO3 Ceramics. J. Electron. Mater. 49, 6199–6207 (2020). https://doi.org/10.1007/s11664-020-08365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08365-7

Keywords

Navigation