Skip to main content
Log in

Metal-to-Ligand Ratio Controlled Assembly of Two Ni(II) Complexes: Structures, Luminescent and Electrochemical Properties

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Treatment of Ni(OAc)2·4 H2O with 3,4-pyrazoledicarboxylic acid (H3pdc) and imidazole (ImH) in different metal-to-ligand ratios afforded two dinuclear nickel(II) complexes, [Ni(Hpdc)(ImH)(H2O)2]2·4 H2O (1) and [Ni(Hpdc)(ImH)2(H2O)]2·2.5 H2O (2), which were characterized by elemental analysis (EA), IR spectra and X-ray diffraction analysis and thermogravimetric analysis (TGA). Both in 1 and 2, the dinickle unit [Ni2(µ2-Hdpc)2] with six-numbered Ni2N4 ring was formed by a pair of µ2-Hpdc2− ligands linked two Ni(II) ions in N,O-chelating and N‒N-bridging fashions. The dinuclear units in 1 and 2 were expanded to 2D layer structures though hydrogen-bonding interactions between coordination water molecules, ImH molecules and carboxylate oxygen atoms, whereas the lattice water molecules in 1 and 2 just embedded in the 2D layer through intermolecular hydrogen bonding interactions. Finally, the 2D sheets in 1 were further assembled to a 3D supramolecular architecture via intermolecular C–H⋯O hydrogen bond. Besides, the luminescent and electrochemical properties of two complexes have been reported.

Graphic Abstract

Two dinuclear nickel(II) complexes, [Ni(Hpdc)(ImH)(H2O)2]2·4 H2O (1) and [Ni(Hpdc)(ImH)2(H2O)]2·2.5 H2O (2), were obtained by assembling of a Ni(II) ion, 3,4-pyrazoledicarboxylic acid (H3pdc) and imidazole (ImH) in different metal-to-ligand ratios. In 1 and 2, the O(C, N)−H⋯O hydrogen bonds expanded the dinuclear complexes to 3D/2D supramolecular structures, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Heine J, Müller-Buschbaum K (2013) Chem Soc Rev 42:9232

    Article  CAS  Google Scholar 

  2. Cui YJ, Yue YF, Qian GD, Chen BL (2012) Chem Rev 112:1126

    Article  CAS  Google Scholar 

  3. Wang B, Lv XL, Feng DW, Xie LH, Zhang J, Li M, Xie YB, Li JR, Zhou HC (2016) J Am Chem Soc 138:6204

    Article  CAS  Google Scholar 

  4. Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J (2012) Chem Soc Rev 41:2308

    Article  CAS  Google Scholar 

  5. Li J, Chen S, Jiang LY, Wu DP, Li YS (2019) Inorg Chem 58:5410

    Article  CAS  Google Scholar 

  6. Li JR, Sculley JL, Zhou HC (2012) Chem Rev 112:869

    Article  CAS  Google Scholar 

  7. Li JR, Yu JM, Lu WG, Sun LB, Sculley J, Balbuena PB, Zhou HC (2013) Nature Commun 4:1538

    Article  Google Scholar 

  8. Raya-Baron A, Oyarzabal I, Arrabal-Campos FM, Seco JM (2017) Inorg Chem 56:8768

    Article  CAS  Google Scholar 

  9. Bar AK, Pichon C, Sutter JP (2016) Coord Chem Rev 308:346

    Article  CAS  Google Scholar 

  10. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Chem Soc Rev 38:1450

    Article  CAS  Google Scholar 

  11. Yoon M, Srirambalaji R, Kim K (2012) Chem Rev 112:1196

    Article  CAS  Google Scholar 

  12. Lv XL, Wang KC, Wang B, Su J, Zou XD, Xie YB, Li JR, Zhou HC (2017) J Am Chem Soc 139:211

    Article  CAS  Google Scholar 

  13. Miao LL, Li HX, Yu M, Zhao W, Gong WJ, Gao J, Ren ZG, Wang HF, Lang JP (2012) Dalton Trans 41:3424

    Article  CAS  Google Scholar 

  14. Citrak SC, Bdeir K, Delgado-Cunningham K, Popple D, Oliver SRJ (2019) Inorg Chem 58:7189

    Article  CAS  Google Scholar 

  15. Li GP, Zhang K, Zhang PF, Liu WN, Tong WQ, Hou L, Wang YY (2019) Inorg Chem 58:3409

    Article  CAS  Google Scholar 

  16. Liu D, Lang FF, Zhou X, Ren ZG, Young DJ, Lang JP (2017) Inorg Chem 56:12542

    Article  CAS  Google Scholar 

  17. Zhang SW, Shi W, Cheng P (2017) Coord Chem Rev 352:108

    Article  CAS  Google Scholar 

  18. Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2005) Acc Chem Res 38:176

    Article  CAS  Google Scholar 

  19. Wimberg J, Scheele UJ, Dechert S, Meyer F (2011) Eur J Inorg Chem 22:3340

    Article  Google Scholar 

  20. Wu CJ, Lin CY, Cheng PC, Yeh CW, Chen JD, Wang JC (2011) Polyhedron 30:2260

    Article  CAS  Google Scholar 

  21. Stadler AM, Kyritsakas N, Vaughan G, Lehn JM (2007) Chem Eur J 13:59

    Article  CAS  Google Scholar 

  22. Hutchinson DJ, Cameron SA, Hanton LR, Moratti SC (2012) Inorg Chem 51:5070

    Article  CAS  Google Scholar 

  23. Bu XH, Chen W, Hou WF, Du M, Zhang RH, Brisse F (2002) Inorg Chem 41:3477

    Article  CAS  Google Scholar 

  24. Chakraborty B, Halder P, Paine TK (2011) Dalton Trans 40:3647

    Article  CAS  Google Scholar 

  25. Amoore JJM, Black CA, Hanton LR, Spicer MD (2005) Cryst Growth Des 5:1255

    Article  CAS  Google Scholar 

  26. Blake AJ, Champness NR, Hubberstey P, Li WS, Withersky MA, Schroder M (1999) Coord Chem Rev 183:117

    Article  CAS  Google Scholar 

  27. Zhao FH, Jing S, Che YX, Zheng JM (2012) CrystEngComm 14:4478

    Article  CAS  Google Scholar 

  28. Liu J, Cheng ML, Yu LL, Chen SC, Shao YL, Liu Q, Zhai CW, Yin FX (2016) RSC Adv 6:52040

    Article  CAS  Google Scholar 

  29. Tang LZP, Yang MW, Cheng ML, Liu Q (2015) Chin J Inorg Chem 31:603

    CAS  Google Scholar 

  30. Cheng ML, Tao F, Chen LT, Wang LD, Liu Q (2015) Inorg Chim Acta 429:22

    Article  CAS  Google Scholar 

  31. Chen LT, Tao F, Wang LD, Hong J, Jia XY, Bao JT, Ji YZ, Cheng ML, Liu Q (2013) Z Anorg Allg Chem 639:552

    Article  CAS  Google Scholar 

  32. Tao F, Chen LT, Cheng ML, Liu Q (2014) Chin J Inorg Chem 30:2105

    CAS  Google Scholar 

  33. Cheng ML, Sun L, Han W, Wang S, Liu Q, Sun XQ, Xi HT (2016) New J Chem 40:10504

    Article  CAS  Google Scholar 

  34. Cheng ML, Bao JT, Wu YJ, Yang BX, Wang QH, Sun L, Liu Q (2018) ChemistrySelect 3:4811

    Article  CAS  Google Scholar 

  35. Jones RG (1951) J Am Chem Soc 73:3684

    Article  CAS  Google Scholar 

  36. Sheldrick GM (2008) Acta Crystallogr A64:112

    Article  Google Scholar 

  37. Mahata P, Natarajan S (2005) Eur J Inorg Chem 11:2156

    Article  Google Scholar 

  38. Zhang SY, Li YH, Li W (2009) Inorg Chim Acta 362:2247

    Article  CAS  Google Scholar 

  39. Li SL, Lan YQ, Ma JF, Yang J, Wei GH, Zhang LP, Su ZM (2008) Cryst Growth Des 8:675

    Article  CAS  Google Scholar 

  40. Wang LD, Tao F, Cheng ML, Liu Q, Han W, Wu YJ, Yang DD, Wang LJ (2012) Chin J Inorg Chem 65:923

    CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No. 21101018), Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 13KJB150001), and the Natural Science Foundation of State Key Laboratory of Coordination Chemistry of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei-Ling Cheng or Qi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, ML., Liu, L., Sun, L. et al. Metal-to-Ligand Ratio Controlled Assembly of Two Ni(II) Complexes: Structures, Luminescent and Electrochemical Properties. J Chem Crystallogr 51, 265–272 (2021). https://doi.org/10.1007/s10870-020-00854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-020-00854-1

Keywords

Navigation