Skip to main content
Log in

Combination of atom transfer radical polymerization and click chemistry toward cellulose-rosin derived UV-absorbent copolymers

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

UV absorption coating is an important function material, which can protect the substrates from photoaging. In this work, a class of sustainable UV-absorbent copolymers derived from ethyl cellulose (EC), fatty acid and rosin were prepared by a combination of atom transfer radical polymerization (ATRP) and click chemistry. To fulfill this strategy, the pendant azides were first attached onto the backbone of EC. Then, ATRP was applied to fabricate well-defined poly(lauryl methacrylate) (PLMA) bearing terminal alkynes. Finally, click chemistry between the pendant azides in EC and the alkynes in PLMA as well as in rosin esters (DAPE), was performed to achieve the cellulose-rosin graft copolymers (EC-(g-DAPE)-g-PLMA) with UV absorption property. The chemical structure of cellulose-rosin graft copolymers was confirmed by FTIR, 1H NMR and GPC. Thermodynamic performance analysis indicated that these EC-rosin graft copolymers showed better thermal stability than EC. Due to the synergistic hydrophobic interaction of rosin and the hydrophobic lauryl groups in PLMA, these graft copolymers showed excellent hydrophobic property, and the static contact angles were all above 90°. In addition, all the EC-rosin graft copolymers showed outstanding and stable UV absorption capability, and maintained excellent UV absorption capability after continuous UV-irradiation for 1 h or being heated to 100 °C for 0.5 h, which had potential application in UV absorption materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu C, Wei M, Wang J, Xu J, Jiang J, Wang K (2020) Facile directional conversion of cellulose and bamboo meal wastes over low-cost sulfate and polar aprotic solvent. ACS Sustain Chem Eng 8:5776–5786

    Article  CAS  Google Scholar 

  2. Lu C, Wang C, Yu J, Wang J, Chu F (2020) Two-step 3D-printing approach toward sustainable, repairable, fluorescent shape-memory thermosets derived from cellulose and rosin. Chemsuschem 13:893–902

    Article  CAS  Google Scholar 

  3. Arrieta M, López J, López D, Kenny J, Peponi L (2016) Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Ind Crop Prod 93:290–301

    Article  CAS  Google Scholar 

  4. Wu L, Huang S, Zheng J, Qiu Z, Lin X, Qin Y (2019) Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel. Int J Biol Macromol 140:538–545

    Article  CAS  Google Scholar 

  5. Li F, Abdalkarim SYH, Yu HY, Zhu J, Zhou Y, Guan Y (2020) Bifunctional reinforcement of green biopolymer packaging nanocomposites with natural cellulose nanocrystal–rosin hybrids. ACS Appl Biol Mater 3:1944–1954

    Article  CAS  Google Scholar 

  6. Chen X, Chen C, Zhu J (2019) Facile preparation of cellulose–attapulgite nanocomposite hydrogel for dye adsorption. Iran Polym J 28:347–359

    Article  CAS  Google Scholar 

  7. Gardner K, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001

    Article  CAS  Google Scholar 

  8. Jiang F, Wang Z, Qiao Y, Wang Z, Tang C (2013) A novel architecture toward third-generation thermoplastic elastomers by a grafting strategy. Macromolecules 46:4772–4780

    Article  CAS  Google Scholar 

  9. Yu J, Liu Y, Liu X, Wang C, Wang J, Chu F, Tang C (2014) Integration of renewable cellulose and rosin towards sustainable copolymers by “grafting from” ATRP. Green Chem 16:1854–1864

    Article  CAS  Google Scholar 

  10. Sirviö JA, Visanko M, Heiskanen JP, Liimatainen H (2016) UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films. J Mater Chem A 4:6368–6375

    Article  Google Scholar 

  11. Yoon H, Kim D, Park M, Kim J, Kim J, Srituravanich W, Shin B, Jung Y, Jeon S (2018) Extraordinary enhancement of UV absorption in TiO2 nanoparticles enabled by low-oxidized graphene nanodots. J Phys Chem C 122:12114–12121

    Article  CAS  Google Scholar 

  12. Liu X, Hu T, Lin G, Wang X, Zhu Y, Liang R, Duan W, Wei M (2020) The synthesis of a DHAD/ZnAlTi-LDH composite with advanced UV blocking and antibacterial activity for skin protection. RSC Adv 10:9786–9790

    Article  CAS  Google Scholar 

  13. Wang G, Xu S, Xia C, Yan D, Lin Y, Wei M (2015) Fabrication of host–guest UV-blocking materials by intercalation of fluorescent anions into layered double hydroxides. RSC Adv 5:23708–23714

    Article  CAS  Google Scholar 

  14. Narayanan M, Loganathan S, Valapa RB, Thomas S, Varghese TO (2017) UV protective poly(lactic acid)/rosin films for sustainable packaging. Int J Biol Macromol 99:37–45

    Article  CAS  Google Scholar 

  15. Shikinaka K, Nakamura M, Otsuka Y (2020) Strong UV absorption by nanoparticulated lignin in polymer films with reinforcement of mechanical properties. Polymer 190:122254

    Article  CAS  Google Scholar 

  16. Fent K, Kunz PY, Zenker A, Rapp M (2010) A tentative environmental risk assessment of the UV-filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnamate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor. Marine Environ Res 69:S4–S6

    Article  CAS  Google Scholar 

  17. Tan EM, Hilbers M, Buma WJ (2014) Excited-state dynamics of isolated and microsolvated cinnamate-based UV-B sunscreens. J Phys Chem Lett 5:2464–2468

    Article  CAS  Google Scholar 

  18. Kugler S, Ossowicz P, Malarczyk-Matusiak K, Wierzbicka E (2019) Advances in rosin-based chemicals: the latest recipes, applications and future trends. Molecules 24:1651

    Article  Google Scholar 

  19. Castro DOD, Bras J, Gandini A, Belgacem N (2016) Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr Polym 137:1–8

    Article  Google Scholar 

  20. Cheng Z, Liu Y, Zhang D, Lu C, Wang C, Xu F, Wang J, Chu F (2019) Sustainable elastomers derived from cellulose, rosin and fatty acid by a combination of “graft from” RAFT and isocyanate chemistry. Int J Biol Macromol 131:387–395

    Article  CAS  Google Scholar 

  21. Liu Y, Yao K, Chen X, Wang J, Wang Z, Ploehn HJ, Wang C, Chu F, Tang C (2014) Sustainable thermoplastic elastomers derived from renewable cellulose, rosin and fatty acids. Polym Chem 5:3170–3181

    Article  CAS  Google Scholar 

  22. Lu C, Yu J, Wang C, Wang J, Chu F (2018) Fabrication of UV-absorbent cellulose-rosin based thermoplastic elastomer via “graft from” ATRP. Carbohydr Polym 188:128–135

    Article  CAS  Google Scholar 

  23. Zhao GL, Hafrén J, Deiana L, Córdova A (2010) Heterogeneous “organoclick” derivatization of polysaccharides: photochemical thiol-ene click modification of solid cellulose. Macromol Rapid Commun 31:740–744

    Article  CAS  Google Scholar 

  24. Aalbers GJ, Boott CE, D’Acierno F, Lewis L, Ho J, Michal CA, Hamad WY, MacLachlan MJ (2019) Post-modification of cellulose nanocrystal aerogels with thiol–ene click chemistry. Biomacromol 20:2779–2785

    Article  CAS  Google Scholar 

  25. Ding X, Wang X, Zhang H, Liu T, Hong C, Ren Q, Zhou C (2020) Preparation of waterborne polyurethane-silica nanocomposites by a click chemistry method. Mater Today Commun 23:100911

    Article  CAS  Google Scholar 

  26. Krouit M, Bras J, Belgacem MN (2008) Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. Eur Polym J 44:4074–4081

    Article  CAS  Google Scholar 

  27. Li Q, Kang H, Liu R (2012) Block and hetero ethyl cellulose graft copolymers synthesized via sequent and one-pot ATRP and click reactions. Chin J Chem 30:2169–2175

    Article  CAS  Google Scholar 

  28. Yu J, Lu C, Wang C, Wang J, Fan Y, Chu F (2017) Sustainable thermoplastic elastomers derived from cellulose, fatty acid and furfural via ATRP and click chemistry. Carbohydr Polym 176:83–90

    Article  CAS  Google Scholar 

  29. Yao K, Wang J, Zhang W, Lee JS, Wang C, Chu F, He X, Tang C (2011) Degradable rosin-ester–caprolactone graft copolymers. Biomacromol 12:2171–2177

    Article  CAS  Google Scholar 

  30. Lu C, Liu Y, Yu J, Wang C, Wang J, Chu F (2018) Fabrication of well-defined shape memory graft polymers derived from biomass: an insight into the effect of side chain architecture on shape memory properties. J Polym Sci A 56:1711–1720

    Article  CAS  Google Scholar 

  31. Xia Y, Larock RC (2010) Castor oil-based thermosets with varied crosslink densities prepared by ring-opening metathesis polymerization (ROMP). Polymer 51:2508–2514

    Article  CAS  Google Scholar 

  32. Narayanan J, Jungman MJ, Patton DL (2012) Hybrid dual-cure polymer networks via sequential thiol–ene photopolymerization and thermal ring-opening polymerization of benzoxazines. React Funct Polym 72:799–806

    Article  CAS  Google Scholar 

  33. Liu X, Wang J, Li S, Zhuang X, Xu Y, Wang C, Chu F (2014) Preparation and properties of UV-absorbent lignin graft copolymer films from lignocellulosic butanol residue. Ind Crop Prod 52:633–641

    Article  CAS  Google Scholar 

  34. Artaki I, Ray U, Gordon H, Gervasio M (1992) Thermal degradation of rosin during high temperature solder reflow. Thermochim Acta 198:7–20

    Article  CAS  Google Scholar 

  35. Qin RX, Huang PX, Liu XM, Ma L, Wu YL (2009) Studies on the kinetics of thermal oxidation of rosin and abietic acid on the polyethylene film. Chem J Chin Univ 30:954–958

    CAS  Google Scholar 

  36. Allen NS, Edge M, Rodriguez M, Liauw CM, Fontan E (2000) Aspects of the thermal oxidation, yellowing and stabilisation of ethylene vinyl acetate copolymer. Polym Degradr Stabil 71:1–14

    Article  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge the support of Fundamental Research Funds for the Central Nonprofit Research Institution of CAF (CAFYBB2016ZD007), National Natural Science foundation of China (31570579; 31971600) and National Key R&D Program of China (2017YFE0106800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Qiu, Y., Guo, X. et al. Combination of atom transfer radical polymerization and click chemistry toward cellulose-rosin derived UV-absorbent copolymers. Iran Polym J 29, 975–983 (2020). https://doi.org/10.1007/s13726-020-00853-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00853-1

Keywords

Navigation