Skip to main content
Log in

The Quantum Corrections on Kerr-Newman Black Hole Thermodynamics by the Generalized Uncertainty Principle

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

By the generalized uncertainty principle, the quantum corrections on Kerr-Newman black hole thermodynamics is studied. Using the modified quantum uncertainty of particles near the event horizon, the relationship between the temperature and the horizon radius for the general stationary black hole is given. Then, to ensure the relational formula having the basic physics meaning, the critical state with Planck temperature for the black hole is obtained. In addition, considering the quantum gravity effects and using the first law of black hole thermodynamics, the entropy of the charged rotating black hole is calculated and the quantum corrections including the logarithmic item to the Bekenstein-Hawking entropy are obtained. Also, in the context of the generalized uncertainty principle, the thermal capacity of Kerr-Newman black hole is obtained. Letting the thermal capacity equal zero, the black hole radiation remnant with Planck temperature is derived. It is found that, for Kerr-Newman black hole, the remnant state is consistent with the critical state. Such, using the generalized uncertainty principle, the temperature divergence at the last stage of evaporation in the traditional Kerr-Newman black hole thermodynamics is removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S.W.: Black hole explosions. Nature. 248, 30 (1974)

    ADS  MATH  Google Scholar 

  2. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D. 7(8), 2333 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D. 14(10), 2460 (1976)

    ADS  MathSciNet  Google Scholar 

  5. Hawking, S.W.: Information loss in black holes. Phys. Rev. D. 72(8), 084013 (2005)

    ADS  MathSciNet  Google Scholar 

  6. Susskind, L.: The world as a hologram. J. Math. Phys. 36(11), 6377 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Hooft, G.: The scattering matrix approach for the quantum black hole: an overview. Int. J. Mod. Phys. A. 11(26), 4688 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Bojowald, M.: Absence of a singularity in loop quantum cosmology. Phys. Rev. Lett. 86(23), 5227 (2001)

    ADS  MathSciNet  Google Scholar 

  9. Husain, V., Winkler, O.: Singularity resolution in quantum gravity. Phys. Rev. D. 69(8), 084016 (2004)

    ADS  MathSciNet  Google Scholar 

  10. Kiefer, C.: Quantum gravity—a short overview. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds.) Quantum Gravity, pp. 1–13. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  11. Witten, E.: Bound states of strings and p-branes. Nucl. Phys. B. 460(2), 335 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Smolin, L.: An invitation to loop quantum gravity. arXiv preprint hep-th/0408048 (2004)

  13. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class.Quant. Grav. 21(15), R53 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Garay, L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys. A. 10(02), 145 (1995)

    ADS  Google Scholar 

  15. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D. 52(2), 1108 (1995)

    ADS  MathSciNet  Google Scholar 

  16. Tawfik, A.N., Diab, A.M.: Review on generalized uncertainty principle. Rep. Prog. Phys. 78(12), 126001 (2015)

    ADS  Google Scholar 

  17. Amelino-Camelia, G.: Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D. 11(01), 35 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Magueijo, J., Smolin, L.: Gravity’s rainbow. Class. Quant. Grav. 21(7), 1725 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Nasseri, F.: Schwarzschild black hole in noncommutative spaces. Gen. Relativ. Gravit. 37(12), 2223 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Amelino-Camelia, G.: Quantum-spacetime phenomenology. Living Rev. Relativ. 16, 5 (2013)

    ADS  Google Scholar 

  21. Cai, R.G., Cao, L.M.: The nature of black holes (in Chinese). Chin. Sci. Bull. 61(19), 2083 (2016)

    Google Scholar 

  22. Tawfik, A.N., Diab, A.M.: Generalized uncertainty principle: approaches and applications. Int. J. Mod. Phys. D. 23(12), 1430025 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Chang, L.N., Minic, D., Okamura, N., et al.: Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem. Phys. Rev. D. 65(12), 125028 (2002)

    ADS  Google Scholar 

  24. Li, X.: Black hole entropy without brick walls. Phys. Lett. B. 540(1), 9 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Dehghani, M., Farmany, A.: Higher dimensional black hole radiation and a generalized uncertainty principle. Phys. Lett. B. 675(5), 460–462 (2009)

    ADS  MathSciNet  Google Scholar 

  26. Dehghani, M.: Corrections to the Hawking tunneling radiation in extra dimensions. Phys. Lett. B. 749, 125 (2015)

    ADS  MATH  Google Scholar 

  27. Medved, A.J.M., Vagenas, E.C.: When conceptual worlds collide: the generalized uncertainty principle and the Bekenstein-Hawking entropy. Phys. Rev. D. 70(12), 124021 (2004)

    ADS  MathSciNet  Google Scholar 

  28. Majumder, B.: Black hole entropy and the modified uncertainty principle: a heuristic analysis. Phys. Lett. B. 703(4), 402 (2011)

    ADS  Google Scholar 

  29. Banerjee, R., Ghosh, S.: Generalized uncertainty principle, remnant mass and singularity problem in black hole thermodynamics. Phys. Lett. B. 688(2), 224 (2010)

    ADS  MathSciNet  Google Scholar 

  30. Li, X., Wen, X.Q.: A heuristic analysis of black hole thermodynamics with generalized uncertainty principle. J. High Energ. Phys. 2009(10), 046 (2009)

    ADS  MathSciNet  Google Scholar 

  31. Ali, A.F., Nafie, H., Shalaby, M.: Minimal length, maximal energy and black-hole remnants. Europhys. Lett. 100(2), 20004 (2012)

    Google Scholar 

  32. Adler, R.J., Chen, P., Santiago, D.I.: The generalized uncertainty principle and black hole remnants. Gen. Relativ. Gravit. 33(12), 2101 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Gangopadhyay, S., Dutta, A., Saha, A.: Generalized uncertainty principle and black hole thermodynamics. Gen. Relativ. Gravit. 46(2), 1661 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Gangopadhyay, S., Dutta, A.: Remnant mass and entropy of black holes and modified uncertainty principle. Gen. Relativ. Gravit. 46(6), 1747 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Gangopadhyay, S., Dutta, A.: Thermodynamics of black holes and the symmetric generalized uncertainty principle. Int. J. Theor. Phys. 55(6), 2746 (2016)

    MATH  Google Scholar 

  36. Gangopadhyay, S., Dutta, A.: Black hole thermodynamics and generalized uncertainty principle with higher order terms in momentum uncertainty. Adv. High Energy Phys. 2018, 7450607 (2018)

    MathSciNet  Google Scholar 

  37. Wu, S.P., Liu, C.Z., Cao, Q.J., et al.: The influence of the generalized uncertainty principle on Kerr black hole thermodynamics (in Chinese). Sci. Sin-Phys. Mech. Astron. 48(5), 050401 (2018)

    Google Scholar 

  38. Hossenfelder, S.: Interpretation of quantum field theories with a minimal length scale. Phys. Rev. D. 73(10), 105013 (2006)

    ADS  MathSciNet  Google Scholar 

  39. Hossenfelder, S.: A note on quantum field theories with a minimal length scale. Class. Quant. Grav. 25(3), 038003 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Griffiths, D.J.: Introduction to Quantum Mechanics. Prentice Hall, Section 3.49, Upper Saddle River (1995)

    MATH  Google Scholar 

  41. Fan, S.J.: A new extracting formula and a new distinguishing means on the one variable cubic equation (in Chinese). J. Hainan Normal Univ. (Nat. Sci.). 2, 91 (1989)

    Google Scholar 

  42. Page, D.N.: Hawking radiation and black hole thermodynamics. New J. Phys. 7, 203 (2005)

    ADS  MathSciNet  Google Scholar 

  43. Chen, P., Chin Ong, Y., Yeom, D.H.: Black hole remnants and the information loss paradox. Phys. Rept. 603, 1 (2015)

    ADS  MathSciNet  Google Scholar 

  44. Myung, Y.S., Kim, Y.W., Kim, Y.J.: Quantum cooling evaporation process in regular black holes. Phys. Lett. B. 656(4–5), 221–225 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Li, X., Ling, Y., Shen, Y.G.: Singularities and the finale of black hole evaporation. Int. J. Mod. Phys. D. 22(12), 1342016 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Li, X., Ling, Y., Shen, Y.G., et al.: Generalized uncertainty principles, effective Newton constant and the regular black hole. Ann. Phys. (N.Y.). 396, 334 (2018)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

Project supported by the Natural Science Foundation of Zhejiang Province of China (No. LY14A030001) and the National Natural Science Foundation of China (No. 11373020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhou Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Liu, C. The Quantum Corrections on Kerr-Newman Black Hole Thermodynamics by the Generalized Uncertainty Principle. Int J Theor Phys 59, 2681–2693 (2020). https://doi.org/10.1007/s10773-020-04468-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04468-3

Keywords

Navigation