Skip to main content

Advertisement

Log in

A spatiotemporal analysis of water quality characteristics in the Klip river catchment, South Africa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Understanding the spatial and temporal patterns of water quality is central to its management as it provides information essential to the restoration as well as protection of water resources. The main objectives of this study were (i) to analyze the spatial and temporal trends of water quality and (ii) to identify the critical sources of pollution in the Klip River catchment (KRC). Water samples were collected at 12 sampling points along the Klip River, monthly from February 2016 to January 2017 and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and spectrophotometry for heavy metals and nutrients, respectively. Multivariate statistical techniques (cluster analysis and discriminant analysis) were used to delineate homogeneous water quality zones and seasons, and principal component analysis was used to identify pollution sources. Comprehensive pollution index (CPI) was also computed to classify the overall pollution of the river. The spatial grouping yielded two homogenous water quality zones namely upstream and downstream. Temporal grouping yielded two clusters, which were attributed to the effects of the El Nino (2015/16 season) and La Nina phenomena (2016/17 season). The CPI revealed that the KRC was critically polluted in the upstream for domestic (162.16–323.28) and aquatic uses (617.70–837.09) in both the 2015/2016 and 2016/2017 seasons. It can be concluded that pollutants, which influence water quality in the KRC in one season and/or location, may not necessarily be the same in the other season or location. Therefore, there is need to develop a water quality management plan in the KRC that targets the most impaired uses, pollutants of priority, and the critically polluted areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Satar A, Elewa A (2001). Water quality and environmental assessments of the river Nile at Rossetta branch. The Second International Conference and Exhibition for Life and Environment.

  • Ahamed, A. J., & Loganathan, K. (2017). Water quality concern in the Amaravati river basin of Karur district: a view at heavy metal concentration and their interrelationships using geostatistical and multivariate analysis. Geology, Ecology, and Landscapes, 1(1), 19–36.

    Article  Google Scholar 

  • Alberto, W. D., Del Pilar, D. M., Valeria, A. M., Fabiana, P. S., Cecilia, H. A., & de Los Angeles, B. M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquı́a river basin (Córdoba–Argentina). Water Research, 35(12), 2881–2894.

    Article  CAS  Google Scholar 

  • Ali, I., Alharbi, O. M., Tkachev, A., Galunin, E., Burakov, A., & Grachev, V. A. (2018). Water treatment by new-generation graphene materials: hope for bright future. Environmental Science and Pollution Research, 25(8), 7315–7329.

    Article  CAS  Google Scholar 

  • Archer, E. R. M., Landman, W. A., Tadross, M. A., Malherbe, J., Weepener, H., Maluleke, P., & Marumbwa, F. M. (2017). Understanding the evolution of the 2014–2016 summer rainfall seasons in southern Africa: Key lessons. Climate Risk Management, 16(2017):22–28.

  • Ashton, P. J., & Haasbroek, B. (2002). Water demand management and social adaptive capacity: a south African case study. In A. R. Turton & R. Henwood (Eds.), Hydropolitics in the developing world: a Southern African perspective (pp. 187–204). Pretoria: IWMI.

    Google Scholar 

  • Azimi E, Abdullah M, Ming L, Yong H, Hussin K, Aziz I (2016). Review of dolomite as precursor of geopolymer materials. In MATEC Web of Conferences (Vol. 78, p. 01090). EDP Sciences.

  • Bates B, Kundzewicz Z. & Wu, S. (2008). Climate change and water. Intergovernmental Panel on Climate Change Secretariat: Geneva Retrieved from http://www.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf.

  • Baudoin, M., Vogel, C., Nortje, K., & Naik, M. (2017). Living with drought in South Africa: lessons learnt from the recent El Niño drought period. International Journal of Disaster Risk Reduction, 23, 128–137.

    Article  Google Scholar 

  • Bodrud-Doza, M., Islam, A. T., Ahmed, F., Das, S., Saha, N., & Rahman, M. S. (2016). Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in Central Bangladesh. Water Science, 30(1), 19–40.

    Article  Google Scholar 

  • Caporale, A. G., & Violante, A. (2016). Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports, 2, 15–27. https://doi.org/10.1007/s40726-015-0024-y.

    Article  CAS  Google Scholar 

  • Chen, J., & Lu, J. (2014). Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in East China. PLoS One, 9(8), e102714.

    Article  CAS  Google Scholar 

  • Chen, Y., Liu, R., Sun, C., Zhang, P., Feng, C., & Shen, Z. (2012). Spatial and temporal variations in nitrogen and phosphorous nutrients in the Yangtze River estuary. Marine Pollution Bulletin, 64(10), 2083–2089.

    Article  CAS  Google Scholar 

  • Conkright, M., Gregg, W., & Levitus, S. (2000). Seasonal cycle of phosphate in the open ocean. Deep Sea Research Part I: Oceanographic Research Papers, 47(2), 159–175.

    Article  CAS  Google Scholar 

  • Cullis, J. D., Rossouw, N., Du Toit, G., Petrie, D., Wolfaardt, G., De Clercq, W., & Horn, A. (2018). Economic risks due to declining water quality in the Breede River catchment. Water SA, 44(3), 464–473.

    CAS  Google Scholar 

  • Davidson, C. (2003). Catchment diagnostic framework for the Klip River catchment, Vaal barrage, October 1998–September 1999, unpublished MSc research report. Johannesburg: University of Witwatersrand.

    Google Scholar 

  • Davis, A. P., Shokouhian, M., & Ni, S. (2001). Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere, 44(5), 997–1009.

    Article  CAS  Google Scholar 

  • Dixon, W., & Chiswell, B. (1996). Review of aquatic monitoring program design. Water Research, 30(9), 1935–1948.

    Article  CAS  Google Scholar 

  • Donald, A. E., & Blessing, U. A. (2019). Index approach to water quality assessment of a south eastern Nigerian river. International Journal of Fisheries and Aquatic Studies., 7(1), 153–159.

    Google Scholar 

  • Duan, W., He, B., Takara, K., Luo, P., Nover, D., Sahu, N., & Yamashiki, Y. (2013). Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007. Chemosphere, 93(6), 946–953.

    Article  CAS  Google Scholar 

  • Durgapersad, K. (2005). Effects of wetlands on water quality and invertebrate biodiversity in the Klip River and Natalspruit in Gauteng, South Africa. Doctoral dissertation, North-West University. South Africa.

  • Everitt, B. S., & Dunn, G. (2001). Principal components analysis. Applied multivariate data analysis. https://doi.org/10.1002/9781118887486.ch3

  • Garizi, A. Z., Sheikh, V., & Sadoddin, A. (2011). Assessment of seasonal variations of chemical characteristics in surface water using multivariate statistical methods. International Journal of Environmental Science and Technology, 8(3), 581–592.

    Article  CAS  Google Scholar 

  • Gaur, V.K., Gupta, S.K., Pandey, S., Gopal, K. & Misra, V. (2005). Distribution of heavy metals in sediment and water of river Gomti. Environmental monitoring and assessment, 102(1),419–433.

  • Ghrefat, H. A., Abu-Rukah, Y., & Rosen, M. A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain dam, Jordan. Environmental Monitoring and Assessment, 178(1), 95–109.

    Article  CAS  Google Scholar 

  • Hajalilou, B., Mosaferi, M., Khaleghi, F., Jadidi, S., Vosugh, B., & Fatehifar, E. (2011). Effects of abandoned arsenic mine on water resources pollution in north west of Iran. Health Promotion Perspective, 1(1), 62–70.

    Google Scholar 

  • Hanh, P. T. M., Sthiannopkao, S., Kim, K., & Hung, N. Q. (2010). Anthropogenic influence on surface water quality of the Nhue and day sub-river systems in Vietnam. Environmental Geochemistry and Health, 32(3), 227–236.

    Article  CAS  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), 807–816.

    Article  CAS  Google Scholar 

  • Huang, J., Huang, Y., & Zhang, Z. (2014). Coupled effects of natural and anthropogenic controls on seasonal and spatial variations of river water quality during base flow in a coastal watershed of Southeast China. PLoS One, 9(3), e91528.

    Article  CAS  Google Scholar 

  • Hudson-Edwards, K. A., Houghton, S., & Taylor, K. (2008). Efficiences of as uptake from aqueous solution by a natural vivianite material at 4°C. Mineralogical Magazine, 72(1), 429–431.

    Article  CAS  Google Scholar 

  • Ikeda, T., Behera, S. K., Morioka, Y., Minakawa, N., Hashizume, M., Tsuzuki, A., Mahara, R., & Kruger, P. (2017). Seasonally lagged effects of climatic factors on malaria incidence in South Africa. Scientific Reports, 7(1), 2458.

    Article  CAS  Google Scholar 

  • Ishaku, J., Ahmed, A., & Abubakar, M. (2011). Assessment of groundwater quality using chemical indices and GIS mapping in Jada area, northeastern Nigeria. Journal of Earth Sciences and Geotechnical Engineering, 1(1), 35–60.

    Google Scholar 

  • Islam, M. S., Ahmed, M. K., & Habibullah-Al-Mamun, M. (2015). Determination of heavy metals in fish and vegetables in Bangladesh and health implications. Human and Ecological Risk Assessment: An International Journal, 21(4), 986–1006.

    Article  CAS  Google Scholar 

  • Kanade, S., & Gaikwad, V. (2011). A multivariate statistical analysis of bore well chemistry data: Nashik and niphad taluka of Maharashtra, India. Universal Journal of Environmental Research and Technology, 1(2), 193–202.

    CAS  Google Scholar 

  • Khalil, B., & Ouarda, T. (2009). Statistical approaches used to assess and redesign surface water-quality-monitoring networks. Journal of Environmental Monitoring, 11(11), 1915–1929.

    Article  CAS  Google Scholar 

  • Khatri, N., & Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers In Life Science, 8(1), 23–39.

    Article  CAS  Google Scholar 

  • Knieper, C., & Pahl-Wostl, C. (2016). A comparative analysis of water governance, water management, and environmental performance in river basins. Water Resources Management, 30(7), 2161–2177.

    Article  Google Scholar 

  • Kura, N. U., Ramli, M. F., Sulaiman, W. N. A., Ibrahim, S., Aris, A. Z., & Mustapha, A. (2013). Evaluation of factors influencing the groundwater chemistry in a small tropical island of Malaysia. International Journal of Environmental Research and Public Health, 10(5), 1861–1881.

    Article  CAS  Google Scholar 

  • Li, X., Li, P., Wang, D. & Wang, Y. (2014). Assessment of temporal and spatial variations in water quality using multivariate statistical methods: A case study of the Xin’anjiang River, China. Frontiers of environmental science & engineering, 8(6),895–904.

  • Ma, X., Wang, L., Wu, H., Li, N., Ma, L., Zeng, C., Zhou, Y. & Yang, J. (2015). Impact of Yangtze River water transfer on the water quality of the Lixia River watershed, China. PloS one, 10(4):e0119720.

  • Manoj, K., & Padhy, P. K. (2014). Distribution, enrichment and ecological risk assessment of six elements in bed sediments of a tropical river, Chottanagpur plateau: A spatial and temporal appraisal. Journal of Environmental Protection, 5(14), 1419–1434.

    Article  CAS  Google Scholar 

  • Martin, C., Aquilina, L., Gascuel-Odoux, C., Molenat, J., Faucheux, M., & Ruiz, L. (2004). Seasonal and interannual variations of nitrate and chloride in stream waters related to spatial and temporal patterns of groundwater concentrations in agricultural catchments. Hydrological Processes, 18(7), 1237–1254.

    Article  Google Scholar 

  • McCarty, K. M., Hanh, H. T., & Kim, K. (2011). Arsenic geochemistry and human health in South East Asia. Reviews on Environmental Health, 26(1), 71–78.

    Article  CAS  Google Scholar 

  • Miller, G.T. (2000). Living in the environment: Principles, connections, and solutions, 11 edn. (pp 1–161). Pacific Grove: Brooks/Cole.

  • Mitchell, M. J., McHale, P. J., Inamdar, S., & Raynal, D. J. (2001). Role of within-lake processes and hydrobiogeochemical changes over 16 years in a watershed in the Adirondack Mountains of New York state, USA. Hydrological Processes, 15(10), 1951–1965.

    Article  Google Scholar 

  • Montalvo, C., Aguilar, C.A., Amador, L.E., Cerón, J.G., Cerón, R.M., Anguebes, F. & Cordova, A.V. (2014). Metal contents in sediments (Cd, Cu, Mg, Fe, Mn) as indicators of pollution of Palizada River, Mexico. Environment and pollution, 3(4),89–98.

  • Nwadinigwe, A. (2014). Air pollution tolerance indices of some plants around Ama industrial complex in Enugu state, Nigeria. African Journal of Biotechnology, 13(11), 1231–1236.

    Article  CAS  Google Scholar 

  • Okello, C., Tomasello, B., Greggio, N., Wambiji, N., & Antonellini, M. (2015). Impact of population growth and climate change on the freshwater resources of Lamu Island, Kenya. Water., 7(3), 1264–1290.

    Article  Google Scholar 

  • Ondieki, C. M., & Kitheka, J. U. (Eds.) (2017). Hydrology and best practices for managing water resources in arid and semi-arid lands. Hershey:IGI Global.

  • Ouyang, Y., Nkedi-Kizza, P., Wu, Q., Shinde, D., & Huang, C. (2006). Assessment of seasonal variations in surface water quality. Water Research, 40(20), 3800–3810.

    Article  CAS  Google Scholar 

  • Pahl-Wostl, C. (2019). Governance of the water-energy-food security nexus: a multi-level coordination challenge. Environmental Science & Policy, 92(2019), 356–367.

    Article  Google Scholar 

  • Pandey, J., & Singh, R. (2017). Heavy metals in sediments of Ganga river: up-and downstream urban influences. Applied Water Science, 7(4), 1669–1678.

    Article  CAS  Google Scholar 

  • Pathak, D. R., Yatabe, R., & Bhandary, N. P. (2015). Identification of major factors affecting spatial and temporal variation of water quality in Kathmandu Basin, Nepal, using multivariate statistical analysis. International Journal of Water, 9(3), 209–225.

    Article  CAS  Google Scholar 

  • Patowary, K. (2016). Determination of arsenic in the water of coal mining areas of Assam. Journal of Applied and Fundamental Sciences, 2(1), 50.

    Google Scholar 

  • Pejman, A., Bidhendi, G. N., Karbassi, A., Mehrdadi, N., & Bidhendi, M. E. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science and Technology, 6(3), 467–476.

    Article  CAS  Google Scholar 

  • Praus, P. (2007). Urban water quality evaluation using multivariate analysis. Acta montanistica slovaca, 12(2), 150–158.

  • Qadir, A., Malik, R. N., & Husain, S. Z. (2008). Spatio-temporal variations in water quality of Nullah aik-tributary of the river Chenab, Pakistan. Environmental Monitoring and Assessment, 140(1), 43–59.

    Article  CAS  Google Scholar 

  • Rahman, M. A. T., Saadat, A. H. M., Islam, M. S., Al-Mansur, M. A., & Ahmed, S. (2017). Groundwater characterization and selection of suitable water type for irrigation in the western region of Bangladesh. Applied Water Science, 7(1), 233–243.

    Article  CAS  Google Scholar 

  • Reza, R., & Singh, G. (2010). Heavy metal contamination and its indexing approach for river water. International Journal of Environmental Science and Technology, 7(4), 785–792.

    Article  CAS  Google Scholar 

  • Roshinebegam, K., & Selvakumar, S. (2014). Seasonal changes in physico-chemical parameters of Mullai periyar river, Tamil Nadu, India. Chemical Science Review & Letters, 3(9), 66–73.

    Google Scholar 

  • Sakan, S., Đorđević, D., Dević, G., Relić, D., Anđelković, I., & Ðuričić, J. (2011). A study of trace element contamination in river sediments in Serbia using microwave-assisted aqua regia digestion and multivariate statistical analysis. Microchemical Journal, 99(2), 492–502.

    Article  CAS  Google Scholar 

  • Simeonov, V., Stratis, J., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in northern Greece. Water Research, 37(17), 4119–4124.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti river (India)—a case study. Water Research, 38(18), 3980–3992.

    Article  CAS  Google Scholar 

  • Singh, K. P., Mohan, D., Singh, V. K., & Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 312(1), 14–27.

    Article  CAS  Google Scholar 

  • Smeti, E. M., & Golfinopoulos, S. K. (2016). Characterization of the quality of a surface water resource by multivariate statistical analysis. Analytical Letters, 49(7), 1032–1039.

    Article  CAS  Google Scholar 

  • Soininen, J., & Könönen, K. (2004). Comparative study of monitoring south-finnish rivers and streams using macroinvertebrate and benthic diatom community structure. Aquatic Ecology, 38(1), 63–75.

    Article  Google Scholar 

  • South African weather services (2017) Seasonal climate watch. http://www.gfcsa.net/SAWS/saws.pdf Accessed 12 October 017.

  • Sultan, K., & Dowling, K. (2006). Seasonal changes in arsenic concentrations and hydrogeochemistry of Canadian creek, Ballarat (Victoria, Australia). Water, Air, & Soil Pollution, 169(1), 355–374.

    Article  CAS  Google Scholar 

  • Taiwo, A., Adeogun, A., Olatunde, K., & Adegbite, K. (2011). Analysis of groundwater quality of hand-dug wells in peri-urban area of Obantoko, Abeokuta, Nigeria for selected physico-chemical parameters. The Pacific Journal of Science and Technology, 12(1), 527–534.

    Google Scholar 

  • Taiwo, A., Olujimi, O., Bamgbose, O., & Arowolo, T. (2012). Surface water quality monitoring in Nigeria: Situational analysis and future management strategy. In K. Voudouris (Ed.), Water Quality Monitoring and Assessment (pp 302-315). https://doi.org/10.5772/33720. Available from: http://www.intechopen.com/books/waterquality-monitoring-and-assessment/surface-water-qualitymonitoring-in-Nigeria-situational-analysis-andfuturemanagement-strategy..

  • Tavakol, M., Arjmandi, R., Shayeghi, M., Monavari, S. M., & Karbassi, A. (2017). Application of multivariate statistical methods to optimize water quality monitoring network with emphasis on the pollution caused by fish farms. Iranian Journal of Public Health, 46(1), 83–92.

    Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Debán, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581–3592.

    Article  CAS  Google Scholar 

  • Vermaak, V. (2010). A geomorphological investigation of the Klip River wetland, south of Johannesburg. MSc dissertation, Johannesburg :University of Witwatersrand.

  • Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., & Reidy Liermann, C. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561.

    Article  CAS  Google Scholar 

  • Wang, X., Sato, T., Xing, B., & Tao, S. (2005). Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of the Total Environment, 350(1), 28–37.

    Article  CAS  Google Scholar 

  • Wang, G., Zhou, B., Cheng, C., Cao, J., Li, J., Meng, J., Tao, J., Zhang, R., & Fu, P. (2013). Impact of Gobi desert dust on aerosol chemistry of Xi’an, inland China during spring 2009: Differences in composition and size distribution between the urban ground surface and the mountain atmosphere. Atmospheric Chemistry and Physics, 13(2), 819–835.

    Article  CAS  Google Scholar 

  • Wang, Y., Liu, C., Liao, P., & Lee, J. (2014). Spatial pattern assessment of river water quality: Implications of reducing the number of monitoring stations and chemical parameters. Environmental Monitoring and Assessment, 186(3), 1781–1792.

    Article  CAS  Google Scholar 

  • Yang, L., Lei, K., Meng, W., Fu, G., & Yan, W. (2013). Temporal and spatial changes in nutrients and chlorophyll-α in a shallow lake, Lake Chaohu, China: an 11-year investigation. Journal of Environmental Sciences, 25(6), 1117–1123.

    Article  CAS  Google Scholar 

  • Yao, H., Qian, X., Gao, H., Wang, Y., & Xia, B. (2014). Seasonal and spatial variations of heavy metals in two typical Chinese rivers: concentrations, environmental risks, and possible sources. International Journal of Environmental Research and Public Health, 11(11), 11860–11878.

    Article  CAS  Google Scholar 

  • Zeng, X., Liu, Y., You, S., Zeng, G., Tan, X., Hu, X., Hu, X., Huang, L., & Li, F. (2015). Spatial distribution, health risk assessment and statistical source identification of the trace elements in surface water from the Xiangjiang River, China. Environmental Science and Pollution Research, 22(12), 9400–9412.

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, Q., Luan, R., Liu, X., Zhou, G., Jiang, J., Li, H., & Li, Z. (2012). Spatial-temporal analysis of malaria and the effect of environmental factors on its incidence in Yongcheng, China, 2006–2010. BMC Public Health, 12(1), 544.

    Article  Google Scholar 

Download references

Funding

The authors received technical, material, and financial support from the North-West University, the Faculty of Natural and Agricultural Sciences and Department of Geography and Environmental Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tafadzwa Marara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marara, T., Palamuleni, L. A spatiotemporal analysis of water quality characteristics in the Klip river catchment, South Africa. Environ Monit Assess 192, 578 (2020). https://doi.org/10.1007/s10661-020-08441-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08441-9

Keywords

Navigation