Skip to main content
Log in

Combined analytical and numerical approach for auxetic FG-CNTRC plate subjected to a sudden load

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In the current work, the dynamic behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plate with negative Poisson’s ratio (NPR) is investigated by combining higher-order shear deformation theory and large deflection theory. First, explicit solutions are proposed to predict the effective Poisson’s ratio (EPR) of the laminates. Taking carbon nanotube-reinforced composite (CNTRC) as an example, the maximum NPR is obtained for \(\left( { \pm \theta } \right)_{{3{\text{T}}}}\) laminate as well. Results show that the EPR (\(v_{13}^{\text{e}}\),\(v_{23}^{\text{e}}\)) can range from a positive value of 0.311 to a negative value of 0.63. For the dynamic response problem, the asymptotic solutions with a two-step perturbation approach are derived for FG-CNTRC plates to capture the relationship between the center deflection and time. Several key factors such as functionally graded distribution, variations in the elastic foundation, and thermal stress produced by changing the temperature field are considered in the subsequent analysis. Numerical simulations are carried out to examine the corresponding dynamic behavior of FG-CNTRC plates when these factors are taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sun C-T, Whitney JM (1973) Theories for the dynamic response of laminated plates. Aiaa J 11:178–183

    Google Scholar 

  2. Ramkumar RL, Chen PC (1983) Low-velocity impact response of laminated plates. Aiaa J 21:1448–1452

    Google Scholar 

  3. Reddy JN (1983) Geometrically nonlinear transient analysis of laminated composite plates. Aiaa J 21:621–629

    MATH  Google Scholar 

  4. Huang X-L, Shen H-S (2004) Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. Int J Solids Struct 41:2403–2427

    MATH  Google Scholar 

  5. Mallek H, Jrad H, Wali M, Dammak F (2019) Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory. Eng Comput. https://doi.org/10.1007/s00366-019-00891-1

    Article  MATH  Google Scholar 

  6. Li C, Shen H-S, Wang H (2019) Nonlinear dynamic response of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Eur Phys J Plus 134:79–94

    Google Scholar 

  7. Nguyen DD, Pham CH (2016) Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs. J Sandw Struct Mater 20:692–717

    Google Scholar 

  8. Zhang RG, Yeh H-L, Yeh H-Y (1998) A preliminary study of negative Poisson’s ratio of laminated fiber reinforced composites. J Reinf Plast Compos 17:1651–1664

    Google Scholar 

  9. Evans KE, Donoghue JP, Alderson KL (2004) The design, matching and manufacture of auxetic carbon fibre laminates. J Compos Mater 38:95–106

    Google Scholar 

  10. Lempriere MB (1968) Poisson’s ratio in orthotropic materials. Aiaa J 6:2226–2227

    Google Scholar 

  11. Clarke JF, Duckett RA, Hine PJ, Hutchinson IJ, Ward IM (1994) Negative Poisson’s ratios in angle-ply laminates: theory and experiment. Composites 25:863–868

    Google Scholar 

  12. Herakovich CT (1984) Composite laminates with negative through-the-thickness. J Compos Mater 18:447–455

    Google Scholar 

  13. Hine PJ, Duckett RA, Ward IM (1997) Negative Poisson’ s ratios in angle-ply laminates. J Mater Sci Lett 16:541–544

    Google Scholar 

  14. Matsuda T, Goto K, Kubota N, Ohno N (2014) Negative through-the-thickness Poisson’s ratio of elastic–viscoplastic angle-ply carbon fiber-reinforced plastic laminates: homogenization analysis. Int J Plast 63:152–169

    Google Scholar 

  15. Hadi Harkati E, Bezazi A, Scarpa F, Alderson K, Alderson A (2007) Modelling the influence of the orientation and fibre reinforcement on the Negative Poisson’s ratio in composite laminates. Phys Stat Sol (b) 244:883–892

    Google Scholar 

  16. Hadi Harkati E, Bezazi A, Boukharouba W, Scarpa F (2009) Influence of carbon fibre on the through-the-thickness NPR behaviour of composite laminates. Phys stat sol (b) 246:2111–2117

    Google Scholar 

  17. Sun C-T, Li SJ (1988) Three-dimensional effective elastic constants for thick laminates. J Compos Mater 22:629–639

    Google Scholar 

  18. Kolahchi R, Safari M, Esmailpour M (2016) Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium. Compos Struct 150:255–265

    Google Scholar 

  19. Hajmohammad MH, Kolahchi R, Zarei MS, Maleki M (2018) Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects. Compos Struct 187:498–508

    Google Scholar 

  20. Lyu Z, Yang Y, Liu H (2020) High-accuracy hull iteration method for uncertainty propagation in fluid-conveying carbon nanotube system under multi-physical fields. Appl Math Model 79:362–380

    MathSciNet  MATH  Google Scholar 

  21. Reddy JN, Khdeir AA (1989) Dynamic response of cross-ply laminated shallow shells according to a refined shear deformation theory. J Acoust Soc Am 85:2423–2431

    Google Scholar 

  22. Khalili SMR, Jafari AA, Eftekhari SA (2010) A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads. Compos Struct 92:2497–2511

    Google Scholar 

  23. Fan Y, Xiang Y, Shen H-S (2020) Nonlinear dynamics of temperature-dependent FG-GRC laminated beams resting on visco-pasternak foundations. Int J Struct Stab Dy 20:2050012

    MathSciNet  Google Scholar 

  24. Gong SW, Lam KY, Reddy JN (1999) The elastic response of functionally graded cylindrical shells to low-velocity impact. Int J Impact Eng 22:397–417

    Google Scholar 

  25. Kiani Y, Sadighi M, Salami SJ, Eslami MR (2013) Low velocity impact response of thick FGM beams with general boundary conditions in thermal field. Compos Struct 104:293–303

    Google Scholar 

  26. Fan Y, Xiang Y, Shen H-S, Hui D (2018) Nonlinear low-velocity impact response of FG-GRC laminated plates resting on visco-elastic foundations. Compos B Eng 144:184–194

    Google Scholar 

  27. Liu H, Lv Z, Wu H (2019) Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory. Compos Struct 214:47–61

    Google Scholar 

  28. Wu H, Liu H (2020) Nonlinear thermo-mechanical response of temperature-dependent FG sandwich nanobeams with geometric imperfection. Eng Comput. https://doi.org/10.1007/s00366-020-01005-y

    Article  Google Scholar 

  29. Liu H, Wu H, Lyu Z (2020) Nonlinear resonance of FG multilayer beam-type nanocomposites: effects of graphene nanoplatelet-reinforcement and geometric imperfection. Aerosp Sci Technol 98:105702

    Google Scholar 

  30. Shen H-S (2009) Functionally graded materials nonlinear analysis of plates and shells. CRC Press, Boca Raton

    Google Scholar 

  31. Shen H-S (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 91:9–19

    Google Scholar 

  32. Wang Z-X, Shen H-S (2012) Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments. Nonlinear Dyn 70:735–754

    MathSciNet  Google Scholar 

  33. Fan Y, Wang H (2017) Nonlinear low-velocity impact on damped and matrix-cracked hybrid laminated beams containing carbon nanotube reinforced composite layers. Nonlinear Dyn 89:1863–1876

    MathSciNet  Google Scholar 

  34. Lei ZX, Zhang LW, Liew KM (2015) Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates. Int J Mech Sci 99:208–217

    Google Scholar 

  35. Zhang LW, Xiao LN, Zou GL, Liew KM (2016) Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method. Compos Struct 148:144–154

    Google Scholar 

  36. Thanh NV, Khoa ND, Tuan ND, Tran P, Duc ND (2017) Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations. J Therm Stress 40:1254–1274

    Google Scholar 

  37. Phung-Van P, Thanh C, Nguyen-Xuan H, Abdel-Wahab M (2018) Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments. Compos Struct 201:882–892

    Google Scholar 

  38. Ebrahimi F, Farazmandnia N, Kokaba MR, Mahesh V (2019) Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Eng Comput. https://doi.org/10.1007/s00366-019-00864-4

    Article  Google Scholar 

  39. Yeh H-L, Yeh H-Y (2002) The effect of transverse moduli on dilatation and through-thickness Poisson’ s ratio in angle-ply laminates. J Reinf Plast Compos 21:1653–1670

    Google Scholar 

  40. Zhang LW, Memar Ardestani M, Liew KM (2017) Isogeometric approach for buckling analysis of CNT-reinforced composite skew plates under optimal CNT-orientation. Compos Struct 163:365–384

    MATH  Google Scholar 

  41. Jam JE, Sh M (2011) Elastic buckling of composite plate reinforced with carbon nanotubes. Inter J Eng Sci Technol 3:4090–4101

    Google Scholar 

  42. Zhang RG, Yeh H-L, Yeh H-Y (1998) A preliminary study of negative Poisson’s ratio of laminated fiber reinforced composites. 17:1651–1664

    Google Scholar 

  43. Yeh H-L, Yeh H-Y (1999) A discussion of negative Poisson’s ratio design for composites. J Reinf Plast Compos 18:1546–1556

    Google Scholar 

  44. Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752

    MATH  Google Scholar 

  45. Shen H-S (2013) A two-step perturbation method in nonlinear analysis of beams, plates and shells. Wiley, Singapore

    MATH  Google Scholar 

  46. Shen H-S, Huang X-H, Yang J (2020) Nonlinear bending of temperature-dependent FG- CNTRC laminated plates with negative Poisson’ s ratio. Mech Adv Mater Struc 27:1–13

    Google Scholar 

  47. Reddy JN (1997) Mechanics of laminated composite plates: theory and analysis. CRC Press, Boca Raton, FL

    MATH  Google Scholar 

  48. Fan Y, Xiang Y, Shen H-S (2019) Nonlinear forced vibration of FG-GRC laminated plates resting on visco-Pasternak foundations. Compos Struct 209:443–452

    Google Scholar 

  49. Shen H-S (1997) Kármán-type equations for a higher-order shear deformation plate theory and its use in the thermal postbuckling analysis. Appl Math Mech 18:1137–1152

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are also grateful for the supports from the Science Research Plan of Shanghai Municipal Science and Technology Committee under Grant 18DZ1205603, the National Key Research and Development Program of China [Grant No. 2017YFC0806100] and the National Natural Science Foundation of China [Grant No. 51908352].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests with publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In Eqs. (9)–(12), the thermal resultants \(\bar{N}_{i}^{T}\), \(\bar{M}_{i}^{T}\) and \(\bar{P}_{i}^{T}\) are given by

$$\left[ {\begin{array}{*{20}c} {\bar{N}_{x}^{T} } \\ {\bar{N}_{y}^{T} } \\ {\bar{N}_{xy}^{T} } \\ \end{array} \begin{array}{*{20}c} {\bar{M}_{x}^{T} } \\ {\bar{M}_{y}^{T} } \\ {\bar{M}_{xy}^{T} } \\ \end{array} \begin{array}{*{20}c} {\bar{P}_{x}^{T} } \\ {\bar{P}_{y}^{T} } \\ {\bar{P}_{xy}^{T} } \\ \end{array} } \right] = \sum\limits_{k = 1}^{N} {\int\limits_{{h_{k - 1} }}^{{h_{k} }} {\left[ {\begin{array}{*{20}c} {A_{x} } \\ {A_{y} } \\ {A_{xy} } \\ \end{array} } \right]} }_{k} (1,Z,Z^{3} )\Delta T\,{\text{d}}Z,$$
(37a)

and \(\bar{S}_{i}^{T} ,\left( {i = x,y,xy} \right)\) are given as

$$\left[ {\begin{array}{*{20}c} {\bar{S}_{x}^{T} } \\ {\bar{S}_{y}^{T} } \\ {\bar{S}_{xy}^{T} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\bar{M}_{x}^{T} } \\ {\bar{M}_{y}^{T} } \\ {\bar{M}_{xy}^{T} } \\ \end{array} } \right] - \frac{4}{{3h^{2} }}\left[ {\begin{array}{*{20}c} {\bar{P}_{x}^{T} } \\ {\bar{P}_{y}^{T} } \\ {\bar{P}_{xy}^{T} } \\ \end{array} } \right],$$
(37b)

in which \(\Delta T\) is temperature increment from an initial state (T0), ΔT = TT0, and

$$\left[ \begin{aligned} A_{x} \hfill \\ A_{y} \hfill \\ A_{xy} \hfill \\ \end{aligned} \right] = - \left[ {\begin{array}{*{20}c} {\bar{Q}_{11} } & {\bar{Q}_{12} } & {\bar{Q}_{16} } \\ {\bar{Q}_{12} } & {\bar{Q}_{22} } & {\bar{Q}_{26} } \\ {\bar{Q}_{16} } & {\bar{Q}_{26} } & {\bar{Q}_{66} } \\ \end{array} } \right]\,\left[ {\begin{array}{*{20}c} {c^{2} } & {s^{2} } \\ {s^{2} } & {c^{2} } \\ {2cs} & { - 2cs} \\ \end{array} } \right]\,\left[ \begin{aligned} \alpha_{11} \hfill \\ \alpha_{22} \hfill \\ \end{aligned} \right],$$
(38)

where \(\bar{Q}_{ij}\) are the component of the transformed lamina stiffness matrix which are evaluated as follows:

$$\left[ \begin{aligned} \bar{Q}_{11} \hfill \\ \bar{Q}_{12} \hfill \\ \bar{Q}_{22} \hfill \\ \bar{Q}_{16} \hfill \\ \bar{Q}_{26} \hfill \\ \bar{Q}_{66} \hfill \\ \end{aligned} \right] = \left[ {\begin{array}{*{20}c} {c^{4} } & {2c^{2} s^{2} } & {s^{4} } & {4c^{2} s^{2} } \\ {c^{2} s^{2} } & {c^{4} + s^{4} } & {c^{2} s^{2} } & { - 4c^{2} s^{2} } \\ {s^{4} } & {2c^{2} s^{2} } & {c^{4} } & {4c^{2} s^{2} } \\ {c^{3} s} & {cs^{3} - c^{3} s} & { - cs^{3} } & { - 2cs(c^{2} - s^{2} )} \\ {cs^{3} } & {c^{3} s - cs^{3} } & { - c^{3} s} & {2cs(c^{2} - s^{2} )} \\ {c^{2} s^{2} } & { - 2c^{2} s^{2} } & {c^{2} s^{2} } & {(c^{2} - s^{2} )^{2} } \\ \end{array} } \right]{\kern 1pt} {\kern 1pt} \left[ {\begin{array}{*{20}c} {Q_{11} } \\ {Q_{12} } \\ {Q_{22} } \\ {Q_{66} } \\ \end{array} } \right],$$
(39a)
$$\left[ {\begin{array}{*{20}c} {\bar{Q}_{44} } \\ {\bar{Q}_{45} } \\ {\bar{Q}_{55} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {c^{2} } \\ { - cs} \\ {s^{2} } \\ \end{array} } & {\begin{array}{*{20}c} {s^{2} } \\ {cs} \\ {c^{2} } \\ \end{array} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {Q_{44} } \\ {Q_{55} } \\ \end{array} } \right],$$
(39b)

where

$$\begin{aligned} Q_{11} = E_{11} (1 - \nu_{12} \nu_{21} )^{ - 1} ,Q_{22} = E_{22} (1 - \nu_{12} \nu_{21} )^{ - 1} ,Q_{12} = \nu_{21} E_{11} (1 - \nu_{12} \nu_{21} )^{ - 1} \hfill \\ Q_{16} = Q_{26} = 0,Q_{66} = G_{12} ,Q_{44} = G_{23} ,Q_{55} = G_{13} . \hfill \\ \end{aligned}$$
(40)

The coefficient \(I_{i}\) can be calculated as:

$$(I_{1} ,I_{2} ,I_{3} ,I_{4} ,I_{5} ,I_{7} ) = \sum\limits_{k = 1}^{N} {} \int_{{h_{k - 1} }}^{{h_{k} }} {\rho_{k} \left( {1,Z,Z^{2} ,Z^{3} ,Z^{4} ,Z^{6} } \right)} \text{d}Z,$$
(41a)

and

$$\begin{aligned} \bar{I}_{2} & = I_{2} - \frac{{4I_{4} }}{{3h^{2} }},\bar{I}_{5} = I_{5} - \frac{{4I_{7} }}{{3h^{2} }},\bar{I}_{3} = I_{3} - \frac{{8I_{5} }}{{3h^{2} }} + \frac{{16I_{7} }}{{9h^{4} }}, \\ I_{8} & = \frac{{I_{2} \bar{I}_{2} }}{{I_{1} }} - \bar{I}_{3} - \frac{4}{{3h^{2} }}\bar{I}_{5} ,I_{9} = \frac{4}{{3h^{2} }}\left( {\bar{I}_{5} - \frac{{\bar{I}_{2} I_{4} }}{{I_{1} }}} \right),I_{{10}} = \frac{{\bar{I}_{2} \bar{I}_{2} }}{{I_{1} }} - \bar{I}_{3} . \\ \end{aligned}$$
(41b)

Appendix 2

The matrices in the Eq. (17) are derived in Shen [49]

$$\left[ {\begin{array}{*{20}c} {A_{ij}^{ * } } & {B_{ij}^{ * } } & {D_{ij}^{ * } } \\ {E_{ij}^{ * } } & {F_{ij}^{ * } } & {H_{ij}^{ * } } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {A_{ij}^{ - 1} } & { - A_{ij}^{ - 1} B_{ij} } & {D_{ij} - B_{ij} A_{ij}^{ - 1} B_{ij} } \\ { - A_{ij}^{ - 1} E_{ij} } & {F_{ij} - E_{ij} A_{ij}^{ - 1} B_{ij} } & {H_{ij} - E_{ij} A_{ij}^{ - 1} E_{ij} } \\ \end{array} } \right],\left( {i,j = 1,2,6} \right),$$
(42)

in which Aij, Bij, Dij, etc. refer to the plate stiffnesses, which are functions of (\(\overline{Q}_{ij}\))k

$$\left( {A_{ij} ,B_{ij} ,D_{ij} ,E_{ij} ,F_{ij} ,H_{ij} } \right) = \sum\limits_{k = 1}^{N} {\int\limits_{{h_{k - 1} }}^{{h_{k} }} {(\bar{Q}_{ij} } } )_{k} \left( {1,Z,Z^{2} ,Z^{3} ,Z^{4} ,Z^{6} } \right){\text{d}}Z\;\left( {i,j = { 1}, 2, 6} \right),$$
(43a)
$$\left( {A_{ij} ,D_{ij} ,F_{ij} } \right) = \sum\limits_{k = 1}^{N} {\int\limits_{{h_{k - 1} }}^{{h_{k} }} {(\bar{Q}_{ij} } } )_{k} (1,Z^{2} ,Z^{4} ){\text{d}}Z\;\left( {i,j = { 4}, 5} \right)\left( {i,j = { 4}, 5} \right),$$
(43b)

In the general case, the matrices \({\text{A}}_{ij}^{*}\),\({\text{D}}_{ij}^{*}\) and \({\text{H}}_{ij}^{*}\) are symmetric although the matrices \({\text{B}}_{ij}^{*}\),\({\text{E}}_{ij}^{*}\) and \({\text{F}}_{ij}^{*}\) might be not.

In the case of (± θ)3T laminated plate:

$$\begin{gathered} \left\{ {\begin{array}{*{20}c} {A_{{45}} = D_{{45}} = F_{{45}} = 0} \\ {F_{{61}}^{*} = F_{{62}}^{*} = B_{{66}}^{*} = E_{{66}}^{*} = 0} \\ \end{array} } \right. \hfill \\ \left\{ {\begin{array}{*{20}c} {A_{{ij}}^{*} = D_{{ij}}^{*} = F_{{ij}}^{*} = H_{{ij}}^{*} = 0{\mkern 1mu} \left( {i = 1,2;j = 6} \right)} \\ {B_{{ij}}^{*} = E_{{ij}}^{*} = 0\quad \quad \quad \quad {\mkern 1mu} \left( {i,j = 1,2} \right)} \\ \end{array} } \right. \hfill \\ \end{gathered}$$
(44)

Appendix 3

In Eq. (35),

$$\begin{aligned} g_{40} & = - \left[ {\gamma_{170} - \gamma_{171} (m^{2} + n^{2} \beta^{2} )} \right] - g_{08}^{*} - \gamma_{14} \gamma_{24} m^{2} n^{2} \beta^{2} \frac{{g_{05}^{*} g_{07} }}{{g_{06} }} \\ & + \gamma_{80} \left( {\gamma_{14} \gamma_{24} \frac{{m^{2} g_{02} + n^{2} \beta^{2} g_{01} }}{{g_{00} }}\frac{{g_{05} }}{{g_{06} }} - \frac{{m^{2} g_{04} + n^{2} \beta^{2} g_{03} }}{{g_{00} }}} \right), \\ \end{aligned}$$
(45)
$$g_{41} = \left\{ {\begin{array}{*{20}c} {Q_{11} - \gamma_{14} (\gamma_{T1} m^{2} + \gamma_{T2} n^{2} \beta^{2} )\Delta T + 3g_{43} \varPhi^{2} (T)\;(immovable\,)} \\ {Q_{11} \left[ {1 - \frac{P}{{P_{cr} }}\frac{{(m^{2} + \eta n^{2} \beta^{2} )}}{{m^{2} }}} \right]\quad \quad \quad \quad \quad \;\;\left( {\text{movable}} \right),} \\ \end{array} } \right.$$
(46)
$$g_{ 42} = 3g_{ 43} \varPhi (T),g_{43} = \frac{{\gamma_{14} \gamma_{24} }}{16}\left( {\frac{{m^{4} }}{{\gamma_{7} }} + \frac{{n^{4} \beta^{4} }}{{\gamma_{6} }} + C_{33} } \right),$$
(47)
$$C_{33} = \left\{ {\begin{array}{*{20}c} {2\frac{{m^{4} + \gamma_{24}^{2} n^{4} \beta^{4} + 2\gamma_{5} m^{2} n^{2} \beta^{2} }}{{\gamma_{24}^{2} - \gamma_{5}^{2} }}\;(\text{immovable})} \\ {0\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \left( {\text{movable}} \right)} \\ \end{array} ,} \right.$$
(48)

where the other symbols are given in Shen [45]

$$\begin{aligned} Q_{11} = g_{08} + \gamma_{14} \gamma_{24} m^{2} n^{2} \beta^{2} \frac{{g_{05} g_{07} }}{{g_{06} }} + \left[ {K_{1} + K_{2} (m^{2} + n^{2} \beta^{2} )} \right], \hfill \\ \gamma_{6} = 1 + \frac{{4m^{2} \gamma_{14} \gamma_{24} \gamma_{230}^{2} }}{{\gamma_{42} + \gamma_{430} 4m^{2} }},\gamma_{7} = \gamma_{24}^{2} + \frac{{4n^{2} \beta^{2} \gamma_{14} \gamma_{24} \gamma_{223}^{2} }}{{\gamma_{31} + \gamma_{322} 4n^{2} \beta^{2} }}, \hfill \\ \end{aligned}$$
(49)
$$\varPhi (T) = \lambda + \varTheta_{3} (\lambda )^{3} + \cdot \cdot \cdot$$
(50)

The coefficients \(\lambda\) and \(\varTheta_{3}\) can be obtained as follow for \(m = n = 1\)

$$\begin{aligned} \lambda & = \frac{16}{{\pi^{2} G_{08} }}\left( {(\gamma_{T3} m^{2} + \gamma_{T4} n^{2} \beta^{2} ) - \frac{{(\gamma_{T3} - \gamma_{T6} )m^{2} g_{102} + (\gamma_{T4} - \gamma_{T7} )n^{2} \beta^{2} g_{101} }}{{g_{00} }}} \right)\Delta T \\ & \times \frac{h}{{\left[ {D_{11}^{*} D_{22}^{*} A_{11}^{*} A_{22}^{*} } \right]^{1/4} }}, \\ \varTheta_{3} & = - \frac{{\gamma_{14} \gamma_{24} }}{{16G_{08} }}\left( {\frac{{m^{4} }}{{\gamma_{7} }} + \frac{{n^{4} \beta^{4} }}{{\gamma_{6} }} + C_{33} } \right), \\ \left[ {\begin{array}{*{20}c} {g_{ 101} } \\ {g_{102} } \\ \end{array} } \right] & = \left[ {\begin{array}{*{20}c} {\left( {\gamma_{31} + \gamma_{320} m^{2} + \gamma_{322} n^{2} \beta^{2} } \right)\left( {\gamma_{230} m^{2} + \gamma_{232} n^{2} \beta^{2} } \right) - \gamma_{331} n^{2} \beta^{2} \left( {\gamma_{221} m^{2} + \gamma_{223} n^{2} \beta^{2} } \right)} \\ {\left( {\gamma_{42} + \gamma_{430} m^{2} + \gamma_{432} n^{2} \beta^{2} } \right)\left( {\gamma_{221} m^{2} + \gamma_{223} n^{2} \beta^{2} } \right) - \gamma_{331} m^{2} \left( {\gamma_{230} m^{2} + \gamma_{232} n^{2} \beta^{2} } \right)} \\ \end{array} } \right], \\ G_{08} & = Q_{11} - \gamma_{14} \left( {\gamma_{T1} m^{2} + \gamma_{T2} n^{2} \beta^{2} } \right)\Delta T. \\ \end{aligned}$$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Xh., Yang, J., Wang, Xe. et al. Combined analytical and numerical approach for auxetic FG-CNTRC plate subjected to a sudden load. Engineering with Computers 38 (Suppl 1), 55–70 (2022). https://doi.org/10.1007/s00366-020-01106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01106-8

Keywords

Navigation