Skip to main content

Advertisement

Log in

Decoupling the Complementarity Effect and the Selection Effect on the Overyielding of Fine Root Production Along a Tree Species Richness Gradient in Subtropical Forests

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The mechanism whereby tree species richness and identity affect the production of fine roots (≤ 2 mm) in forests remains controversial. Complementarity effects (via resource partitioning and facilitation, CEs) and selection effects (that is, dominant of species with particular traits, SEs) are the two hypotheses to explain biodiversity effects on ecosystem functions. This study aimed to (1) examine how tree species diversity affects fine root production and (2) disentangle the complementarity effect and the selection effect on the relationship between biodiversity and fine root production. A total of 60 tree clusters with 15 combinations of diversity gradients consisting of 1–4 tree species (Pinus massoniana, Choerospondias axillaris, Cyclobalanopsis glauca and Lithocarpus glaber) were established in subtropical forests. The sequential soil core and ingrowth core methods were used in each cluster to measure fine root biomass and productivity. Fine root production increased with increase in tree species richness. The biodiversity effects on fine root production mostly resulted from CEs. In the nongrowing season, in most cases, the CE on biomass was positive and became stronger as richness increased, but the opposite situation was observed in the growing season. The strong positive and negative effects of the proportions of C. glauca and L. glaber in the tree clusters on fine root biomass, CEs and SEs, suggest the coordinated action of species diversity and identity in modulating biodiversity effects on belowground processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abramoff R, Finzi AC. 2014. Are above and belowground phenology in sync? New Phytol 205:1054–61.

    PubMed  Google Scholar 

  • Allan E, Weisser W, Weigelt A, Roscher C, Fischer M, Hillebrand H. 2011. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. P Natl Acad Sci USA 108:17034–9.

    CAS  Google Scholar 

  • Archambault C, Paquette A, Messier C, Khlifa R, Munson AD, Handa IT. 2019. Evergreenness influences fine root growth more than tree diversity in a common garden experiment. Oecologia 189:1027–39.

    PubMed  Google Scholar 

  • Barry KE, Mommer L, van Ruijven J, Wirth C, Wright AJ, Bai YF, Connolly J, De Deyn GB, de Kroon H, Isbell F, Milcu A, Roscher C, Scherer-Lorenzen M, Schmid B, Weigelt A. 2019. The future of complementarity disentangling causes from consequences. Trends Ecol Evol 34:167–80.

    PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S. 2017. lme4: linear mixed-effects models using “Eigen” and S4. R package version 3.5.1. http://lme4.r-forge.r-project.org/.

  • Bauhus J, Khanna PK, Menden N. 2000. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Can J Forest Res 30:1886–94.

    Google Scholar 

  • Bolte A, Villanueva I. 2006. Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur J Forest Res 125:15–26.

    Google Scholar 

  • Brassard BW, Chen HYH, Bergeron Y, Paré D. 2011. Differences in fine root productivity between mixed- and single-species stands. Funct Ecol 25:238–46.

    Google Scholar 

  • Brassard BW, Chen HYH, Cavard X, Lahanière J, Reich PB, Bergeron Y, Paré D, Yuan ZY. 2013. Tree species diversity increases fine root productivity through increased soil volume filling. J Ecol 101:210–19.

    Google Scholar 

  • Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A et al. 2014. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical china. Meth Ecol Evol 5:74–89.

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze ED. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–95.

    CAS  PubMed  Google Scholar 

  • Cardinale B. 2012. Impacts of biodiversity loss. Science 336:552–3.

    CAS  PubMed  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. P Natl Acad Sci USA 104:18123–8.

    CAS  Google Scholar 

  • Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A. 2011. The functional role of producer diversity in ecosystems. Am J Bot 98:572–92.

    PubMed  Google Scholar 

  • Carter MR, Gregorich EG. 2006. Soil sampling and methods of analysis. Boca Raton: CRC Press.

    Google Scholar 

  • Cavard X, Bergeron Y, Chen HY, Paré D, Laganière J, Brassard B. 2011. Competition and facilitation between tree species change with stand development. Oikos 120:1683–95.

    Google Scholar 

  • Domisch T, Finér L, Dawud SM, Vesterdal L, Raulund-Rasmussen K. 2015. Does species richness affect fine root biomass and production in young forest plantations? Oecologia 177:581–94.

    PubMed  Google Scholar 

  • Fargione J, Tilman D. 2002. Competition and coexistence in terrestrial plants. In: Competition and coexistence. Berlin: Springer. pp. 165–206.

  • Fargione J, Tilman D. 2005. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143:598–606.

    PubMed  Google Scholar 

  • Fargione J, Tilman D, Dybzinski R, Lambers JHR, Clark C, Harpole WS, Johannes MHK, Reich PB, Loreau M. 2007. From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. P Roy Soc B-Biol Sci 274:871–6.

    Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y. 2011. Factors causing variation in fine root biomass in forest ecosystems. Forest Ecol Manag 261:265–77.

    Google Scholar 

  • Finér L, Domisch T, Dawud SM, Raulund-Rasmussen K, Vesterdal L, Bouriaud O, Bruelheide H, Jaroszewicz B, Selvi F, Valladares F. 2017. Conifer proportion explains fine root biomass more than tree species diversity and site factors in major European forest types. Forest Ecol Manag 406:330–50.

    Google Scholar 

  • Fitter A. 1986. Spatial and temporal patterns of root activity in a species-rich alluvial grassland. Oecologia 69:594–9.

    CAS  PubMed  Google Scholar 

  • Forrester DI, Kohnle U, Albrecht AT, Bauhus J. 2013. Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. Forest Ecol Manag 304:233–42.

    Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J. 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340.

    PubMed  PubMed Central  Google Scholar 

  • Hantsch L, Bien S, Radatz S, Braun U, Auge H, Bruelheide H. 2014. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation. Journal of Ecology 102(6):1673–87.

    Google Scholar 

  • Hendriks M, Ravenek JM, Smit-Tiekstra AE, van der Paauw JW, de Caluwe H, van der Putten WH, de Kroon H, Mommer L. 2015. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition. New Phytol 207:830–40.

    PubMed  Google Scholar 

  • Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M. 2011. High plant diversity is needed to maintain ecosystem services. Nature 477:199–202.

    CAS  PubMed  Google Scholar 

  • IUSS Working Group WRB. 2006. World reference base for soil resource 2006. In: World soil resources reports no. 103. 2nd ed. Rome: FAO.

  • Jacob A, Hertel D, Leuschner C. 2013. On the significance of belowground overyielding in temperate mixed forests separating species identity and species diversity effects. Oikos 122:463–73.

    Google Scholar 

  • Jacob A, Hertel D, Leuschner C. 2014. Diversity and species identity effects on fine root productivity and turnover in a species-rich temperate broad-leaved forest. Funct Plant Biol 41:678–89.

    PubMed  Google Scholar 

  • Lei P, Scherer-Lorenzen M, Bauhus J. 2012. The effect of tree species diversity on fine-root production in a young temperate forest. Oecologia 169:1105–15.

    PubMed  Google Scholar 

  • Leuschner C, Jungkunst HF, Fleck S. 2009. Functional role of forest diversity: pros and cons of synthetic stands and across site comparison in established forests. Basic Appl Ecol 10:1–9.

    Google Scholar 

  • Liu C, Xiang WH, Lei PF, Deng XW, Tian DL, Fang X, Peng CH. 2014. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant Soil 376:445–59.

    CAS  Google Scholar 

  • Loiola PP, Scherer-Lorenzen M, Batalha MA. 2015. The role of environmental filters and functional traits in predicting the root biomass and productivity in savannas and tropical seasonal forests. Forest Ecol Manag 342:49–55.

    Google Scholar 

  • Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–6.

    CAS  PubMed  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaetli D, Schmid B, Tilman D, Wardle DA. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–8.

    CAS  PubMed  Google Scholar 

  • Lukac M, Godbold DL. 2001. A modification of the ingrowth-core method to determine root production in fast growing tree species. J Plant Nutr Soil Sc 164:613–14.

    CAS  Google Scholar 

  • Lukac M, Godbold DL. 2010. Fine root biomass and turnover in southern taiga estimated by root inclusion nets. Plant Soil 331:505–13.

    CAS  Google Scholar 

  • Ma ZL, Chen HYH. 2017. Effects of species diversity on fine root productivity increase with stand development and associated mechanisms in a boreal forest. J Ecol 105:237–45.

    Google Scholar 

  • Ma ZL, Chen HYH, Kumar P, Gao BL. 2019. Species mixture increases production partitioning to belowground in a natural boreal forest. Forest Ecol Manag 432:667–74.

    Google Scholar 

  • Marquard E, Weigelt A, Temperton VM, Roscher C, Schumacher J, Buchmann N, Fischer M, Weisser WW, Schmid B. 2009. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90:3290–302.

    PubMed  Google Scholar 

  • McConnaughay KDM, Bazzaz FA. 1991. Is physical space a soil resource? Ecology 72:94–103.

    Google Scholar 

  • McKay HM, Malcolm DC. 1988. A comparison of the fine root component of a pure and a mixed coniferous stand. Can J Forest Res 18:1416–26.

    Google Scholar 

  • Meinen C, Hertel D, Leuschner C. 2009a. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding? Oecologia 161:99–111.

    PubMed  PubMed Central  Google Scholar 

  • Meinen C, Hertel D, Leuschner C. 2009b. Root growth and recovery in temperate broad-leaved forest stands differing in tree species diversity. Ecosystems 12:1103–16.

    Google Scholar 

  • Meinen C, Leuschner C, Ryan NT, Hertel D. 2009c. No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests. Trees 23:941–50.

    Google Scholar 

  • Mommer L, van Ruijven J, de Caluwe H, Smit-Tiekstra AE, Wagemaker CAM, Ouborg NJ, Bögemann GM, van der Weerden GM, Berendse F, de Kroon H. 2010. Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. J Ecol 98:1117–27.

    Google Scholar 

  • Mommer L, Padilla FM, van Ruijven J, de Caluwe H, Smit-Tiekstra A, Berendse F, de Kroon H. 2015. Diversity effects on root length production and loss in an experimental grassland community. Funct Ecol 29:1560–8.

    Google Scholar 

  • Montès N, Maestre FT, Ballini C, Baldy V, Gauquelin T, Planquette M, Greff S, Dupouyet S, Perret JB. 2008. On the relative importance of the effects of selection and complementarity as drivers of diversity–productivity relationships in Mediterranean shrublands. Oikos 117:1345–50.

    Google Scholar 

  • Mueller KE, Tilman D, Fornara DA, Hobbie SE. 2013. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94:787–93.

    Google Scholar 

  • Oram NJ, Ravenek JM, Barry KE, Weigelt A, Chen H, Gessler A, Gockele A, de Kroon H, van der Paauw JW, Scherer-Lorenzen M, Smit-Tiekstra A, van Ruijven J, Mommer L. 2018. Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species. J Ecol 106:265–77.

    CAS  Google Scholar 

  • Parrish JAD, Bazzaz FA. 1976. Underground niche separation in successional plants. Ecology 57:1281–8.

    Google Scholar 

  • Pärtel M, Hiiesalu I, Öpik M, Wilson SD. 2012. Below-ground plant species richness: new insights from DNA-based methods. Funct Ecol 26:775–82.

    Google Scholar 

  • Radville L, McCormack ML, Post E, Eissenstat DM. 2016. Root phenology in a changing climate. J Exp Bot 67:3617–28.

    CAS  PubMed  Google Scholar 

  • Reich PB, Tilman D, Isbell F, Mueller K, Hobbie S, Flynn D, Eisenhauer N. 2012. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336:589–92.

    CAS  PubMed  Google Scholar 

  • Roscher C, Schumacher J, Gubsch M, Lipowsky A, Weigelt A, Buchmann N, Schmid B, Schulze ED. 2012. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7:e36760.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid I, Kazda M. 2002. Root distribution of Norway spruce in monospecific and mixed stands on different soils. Forest Ecol Manag 159:37–47.

    Google Scholar 

  • Schmid B, Hector A, Saha P, Loreau M. 2008. Biodiversity effects and transgressive overyielding. J Plant Ecol 1:95–102.

    Google Scholar 

  • Špaèková I, Lepš J. 2001. Procedure for separating the selection effect from other effects in diversity–productivity relationship. Ecol Lett 4:585–94.

    Google Scholar 

  • Spehn EM, Joshi J, Schmid B, Alphei J, Körner C. 2000. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224:217–30.

    CAS  Google Scholar 

  • Stephan A, Meyer AH, Schmid B. 2000. Plant diversity affects culturable soil bacteria in experimental grassland communities. J Ecol 88:988–98.

    Google Scholar 

  • Steudel B, Hector A, Friedl T, Löfke C, Lorenz M, Wesche M, Kessler M. 2012. Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecol Lett 15:1397–405.

    PubMed  Google Scholar 

  • Sun Z, Liu X, Schmid B, Bruelheide H, Bu WS, Ma KP. 2017. Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. J Plant Ecol 10:146–57.

    Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C. 2001. Diversity and productivity in a long-term grassland experiment. Science 294:843–5.

    CAS  PubMed  Google Scholar 

  • Tilman D, Reich PB, Isbell F. 2012. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. P Natl Acad Sci USA 109:10394–7.

    CAS  Google Scholar 

  • Tobner CM, Paquette A, Gravel D, Reich PB, Williams LJ, Messier C. 2016. Functional identity is the main driver of diversity effects in young tree communities. Ecol Lett 19:638–47.

    PubMed  Google Scholar 

  • Turnbull LA, Levine JM, Loreau M, Hector A. 2013. Coexistence, niches and biodiversity effects on ecosystem functioning. Ecol Lett 16:116–27.

    PubMed  Google Scholar 

  • Uselman SM, Qualls RG, Lilienfein J. 2007. Fine root production across a primary successional ecosystem chronosequence at Mt. Shasta, California. Ecosystems 10:703–17.

    CAS  Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J. 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89.

    CAS  Google Scholar 

  • Wu HL, Xiang WH, Ouyang S, Forrester DI, Zhou B, Chen LX, Ge TD, Lei PF, Chen L, Zeng YL, Song XZ, Peñuelas J, Peng CH. 2019. Linkage between tree species richness and soil microbial diversity improves phosphorus bioavailability. Funct Ecol 33:1549–60.

    Google Scholar 

  • Xiang WH, Fan GW, Lei PF, Zeng YL, Tong J, Fang X, Deng XW, Peng CH. 2015. Fine root interactions in subtropical mixed forests in China depend on tree species composition. Plant Soil. 395:335–49.

    CAS  Google Scholar 

  • Zeng WX, Xiang WH, Fang JP, Zhou B, Ouyang S, Zeng YL, Chen L, Lei PF, Milcu A, Valverde-Barrantes OJ. 2019. Species richness and functional-trait effects on fine root biomass along a subtropical tree diversity gradient. Plant Soil 1–13.

  • Zhao HY, Chen YY, Xiong DC, Huang JX, Wang WW, Yang ZJ, Chen GS, Yang YS. 2017. Fine root phenology differs among subtropical evergreen broadleaved forests with increasing tree diversities. Plant Soil 420:481–91.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31570447 and 31870431) and the Huitong Forest Ecological Station, funded by the State Forestry and grassland Administration of China. Cong Liu would like to acknowledge the China Scholarship Council for supporting her joint Ph.D. program Grant (201708430137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhua Xiang or Binggeng Xie.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Authors Contributions

WHX and BGX planned and designed the research. CL, SO and YLZ performed experiments, conducted fieldwork and collected data. CL, WHX, BGX, SO, YLZ, PFL and CHP wrote the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Xiang, W., Xie, B. et al. Decoupling the Complementarity Effect and the Selection Effect on the Overyielding of Fine Root Production Along a Tree Species Richness Gradient in Subtropical Forests. Ecosystems 24, 613–627 (2021). https://doi.org/10.1007/s10021-020-00538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00538-z

Keywords

Navigation