Skip to main content
Log in

Delineating planner surfaces from correlation-based DEMS

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Planner surfaces play an important role in several mapping and planning applications in urban areas. Automated algorithms to extract such surfaces are essential since they reduce the time and cost when compared to editing these DEMs manually. These surfaces could be constructed from either correlation-based DEMs or LIDAR point clouds. The advantages of the first over the second make it more appealing in generating 3D planer surfaces. In this paper we outline an automated algorithm to delineate 3D surfaces in DEMs compiled from a set of high resolution digital aerial photographs. Each cell in the DEM is assigned three attributes representing: height from bare ground, local statistics of neighboring elevations, and homogeneity of pixel intensities in corresponding aerial photos. These attributes are used to classify DEM points to ground and non-ground points using a feedforward back-propagation neural network. Candidate non-ground points are further segmented into different surfaces based on their tendency to lie in a plane. The 3D parameters of roof planes are then estimated using a robust estimator and regression analyses. DEM points contiguous to the roof patches are augmented if they pass an intensity compatibility check. Results showed an average increase in the precision of the DEMs’ heights for roof posts from 48 cm to 15 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Awrangjeb M, Fraser CS (2014) Automatic segmentation of raw LiDAR data for extraction of building roofs. Remote Sens 6(5):3716–3751

    Article  Google Scholar 

  • Awrangjeb M, Zhang C, Fraser CS (2012) Building detection in complex scenes thorough effective separation of buildings from trees. Photogramm Eng Remote Sens 78(7):729–745

    Article  Google Scholar 

  • Awrangjeb M, Zhang C, Fraser CS (2013) Automatic extraction of building roofs using LIDAR data and multispectral imagery. ISPRS J Photogramm Remote Sens 83:1–18

    Article  Google Scholar 

  • Borovicka, Tomas, Marcel Jirina Jr, Marcel Jirina, and Pavel Kordik. Selecting representative data sets. INTECH Open Access Publisher, 2012

  • Borrmann D, Elseberg J, Lingemann K, Nüchter A (2011) The 3D Hough transform for plane detection in point clouds: a review and a new accumulator design. 3D Research 2(2):1–13

    Article  Google Scholar 

  • Chen Y, Wei S, Li J, Sun Z (2009) Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas. Adv Space Res 43(7):1101–1110

    Article  Google Scholar 

  • Chen D, Zhang L, Li J, Liu R (2012) Urban building roof segmentation from airborne lidar point clouds. Int J Remote Sens 33(20):6497–6515

    Article  Google Scholar 

  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens 92:79–97

    Article  Google Scholar 

  • Csanyi N, Toth CK (2007) Improvement of lidar data accuracy using lidar-specific ground targets. Photogramm Eng Remote Sens 73(4):385–396

    Article  Google Scholar 

  • Elaksher AF (2017) Automatic correction of DEM surface errors. J Geogr Inf Syst 9(03):326–338

    Google Scholar 

  • Elaksher AF, Bethel J (2010) Refinement of digital elevation models in urban areas using breaklines via a multi-photo least squares matching algorithm. J Terrestrial Observation 2(2):7

    Google Scholar 

  • Elkan, Charles. "Evaluating classifiers." University of San Diego, California, retrieved [01-11-2012] from http://cseweb.ucsd.edu/~elkanB250 (2012)

  • Foody GM (1995) Land cover classification by an artificial neural network with ancillary information. Int J Geogr Inf Syst 9(5):527–542

    Article  Google Scholar 

  • Gehrke, Stephan, Robert Uebbing, Michael Downey, and Kris Morin. "Creating and using very high density point clouds derived from ADS imagery." In Proceedings of the American Society of Photogrammetry and Remote Sensing 2011 Annual Conference, Milwaukee, WI, USA, vol. 15. 2011

  • Gerke M, Straub BM, Koch A (2001) Automatic detection of buildings and trees from aerial imagery using different levels of abstraction. Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung 10(1):273–280

  • Gilani SAN, Awrangjeb M, and Lu G (2016) An automatic building extraction and regularisation technique using LiDAR point cloud data and orthoimage. Remote Sens 8(3):258

  • Gilani SAN, Awrangjeb M, Lu G (2015) Fusion of LIDAR Data and Multispectral Imagery for Effective Building Detection Based on Graph and Connected Component Analysis. Int Archives Photogramm Remote Sens Spatial Inf Sci 40(3):65

    Article  Google Scholar 

  • Haykin, S. Neural networks: a Comprehensive Foundation. New York: Macmillan Publishing, 1994

  • Hepner GF (1990) Artificial neural network classification using a minimal training set. Comparison to conventional supervised classification. Photogramm Eng Remote Sens 56(4):469–473

    Google Scholar 

  • Hodgson ME, Bresnahan P (2004) Accuracy of airborne LiDAR-derived elevation. Photogramm Eng Remote Sens 70(3):331–339

    Article  Google Scholar 

  • Jochem A, Höfle B, Wichmann V, Rutzinger M, Zipf A (2012) Area-wide roof plane segmentation in airborne LiDAR point clouds. Comput Environ Urban Syst 36(1):54–64

    Article  Google Scholar 

  • Kwak E, Habib A (2014) Automatic representation and reconstruction of DBM from LiDAR data using recursive minimum bounding rectangle. ISPRS J Photogramm Remote Sens 93:171–191

    Article  Google Scholar 

  • Lari Z, Habib A (2014) An adaptive approach for the segmentation and extraction of planar and linear/cylindrical features from laser scanning data. ISPRS J Photogramm Remote Sens 93:192–212

    Article  Google Scholar 

  • Li Y, Wu H (2008) Adaptive building edge detection by combining LiDAR data and aerial images. Int Archives Photogramm Remote Sens Spatial Inf Sci 37:197–202

    Google Scholar 

  • Li Y, Wu H, An R, Xu H, He Q, Jia X (2013) An improved building boundary extraction algorithm based on fusion of optical imagery and LIDAR data. Optik-Int J Light Electron Optics 124(22):5357–5362

    Article  Google Scholar 

  • Lui X (2011) Accuracy assessment of LiDAR elevation data using survey marks. Surv Rev 43(319):80–93

  • Michez, Adrien, Hervé Piégay, Philippe Lejeune, and Hugues Claessens. "Characterization of riparian zones in wallonia (belgium) from local to regional scale using aerial lidar data and photogrammetric DSM." EARSeL eProceedings13, no. 2 (2014)

  • Mikhail, Edward M., James S. Bethel, and J. Chris McGlone. Introduction to modern photogrammetry. Vol. 1. John Wiley & Sons Inc, 2001

  • Miller DM, Kaminsky EJ, Rana S (1995) Neural network classification of remote-sensing data. Comput Geosci 21(3):377–386

    Article  Google Scholar 

  • Mongus D, Lukač N, Žalik B (2014) Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces. ISPRS J Photogramm Remote Sens 93:145–156

    Article  Google Scholar 

  • Nex F, Remondino F (2014) UAV for 3D mapping applications: a review. Appl Geomatics 6(1):1–15

    Article  Google Scholar 

  • Nolan M, Larsen CF, Sturm M (2015) Mapping snow-depth from manned-aircraft on landscape scales at centimeter resolution using Structure-from-Motion photogrammetry. Cryosphere Discuss 9(1):333–381

    Article  Google Scholar 

  • Rosenfeld, A. and A. C. Kak. Digital image processing, vol. 2, 2nd ed. New York: Academic, 1982

  • Ruiz JJ, Diaz-Mas L, Perez F, Viguria A (2013) Evaluating the accuracy of DEM generation algorithms from UAV imagery. Int Arch Photogramm Remote Sens Spatial Inf Sci 40:333–337

    Article  Google Scholar 

  • Satari M, Samadzadegan F, Azizi A, Maas H-G (2012) A multi-resolution hybrid approach for building model reconstruction from Lidar data. Photogramm Rec 27(139):330–359

    Article  Google Scholar 

  • Stal C, Tack F, De Maeyer P, De Wulf A, Goossens R (2013) Airborne photogrammetry and lidar for DSM extraction and 3D change detection over an urban area–a comparative study. Int J Remote Sens 34(4):1087–1110

    Article  Google Scholar 

  • Ussyshkin, V., and L. Theriault. "Precise mapping: ALTM Orion establishes a new standard in airborne lidar performance." In Proceedings of ASPRS Annual Conference 2010

  • Xiao J, Gerke M (2015) Building footprint extraction based on radiometric and geometric constraints in airborne oblique images. Int J Image Data Fusion 6(3):270–287

    Article  Google Scholar 

  • Yang B, Xu W, Yao W (2014) Extracting buildings from airborne laser scanning point clouds using a marked point process. GIScience Remote Sens 51(5):555–574

    Article  Google Scholar 

  • Zhang GP (2000) Neural networks for classification: a survey. Syst Man Cybernetics Part C: Appl Rev IEEE Trans 30(4):451–462

    Article  Google Scholar 

  • Zhang K, Chen S-C, Whitman D, Shyu M-L, Yan J, Zhang C (2003) A progressive morphological filter for removing nonground measurements from airborne LIDAR data. Geosci Remote Sens IEEE Trans 41(4):872–882

    Article  Google Scholar 

  • Zhang W, Wang H, Chen Y, Yan K, Chen M (2014) 3D building roof modeling by optimizing primitive’s parameters using constraints from LiDAR data and aerial imagery. Remote Sens 6(9):8107–8133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaksher Ahmed.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, E., Tarig, A. & James, B. Delineating planner surfaces from correlation-based DEMS. Earth Sci Inform 13, 835–846 (2020). https://doi.org/10.1007/s12145-020-00459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-020-00459-4

Keywords

Navigation