Skip to main content
Log in

Genetic investigation of purine nucleotide imbalance in Saccharomyces cerevisiae

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Because metabolism is a complex balanced process involving multiple enzymes, understanding how organisms compensate for transient or permanent metabolic imbalance is a challenging task that can be more easily achieved in simpler unicellular organisms. The metabolic balance results not only from the combination of individual enzymatic properties, regulation of enzyme abundance, but also from the architecture of the metabolic network offering multiple interconversion alternatives. Although metabolic networks are generally highly resilient to perturbations, metabolic imbalance resulting from enzymatic defect and specific environmental conditions can be designed experimentally and studied. Starting with a double amd1 aah1 mutant that severely and conditionally affects yeast growth, we carefully characterized the metabolic shuffle associated with this defect. We established that the GTP decrease resulting in an adenylic/guanylic nucleotide imbalance was responsible for the growth defect. Identification of several gene dosage suppressors revealed that TAT1, encoding an amino acid transporter, is a robust suppressor of the amd1 aah1 growth defect. We show that TAT1 suppression occurs through replenishment of the GTP pool in a process requiring the histidine biosynthesis pathway. Importantly, we establish that a tat1 mutant exhibits synthetic sickness when combined with an amd1 mutant and that both components of this synthetic phenotype can be suppressed by specific gene dosage suppressors. Together our data point to a strong phenotypic connection between amino acid uptake and GTP synthesis, a connection that could open perspectives for future treatment of related human defects, previously reported as etiologically highly conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akizu N, Cantagrel V, Schroth J, Cai N, Vaux K, McCloskey D, Naviaux RK, Van Vleet J, Fenstermaker AG, Silhavy JL et al (2013) AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder. Cell 154:505–517

    Article  CAS  Google Scholar 

  • Alfonzo JD, Crother TR, Guetsova ML, Daignan-Fornier B, Taylor MW (1999) APT1, but not APT2, codes for a functional adenine phosphoribosyltransferase in Saccharomyces cerevisiae. J Bacteriol 181:347–352

    Article  CAS  PubMed Central  Google Scholar 

  • Atkinson DE, Walton GM (1967) Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J Biol Chem 242:3239–3241

    CAS  Google Scholar 

  • Bonneaud N, Ozier-Kalogeropoulos O, Li GY, Labouesse M, Minvielle-Sebastia L, Lacroute F (1991) A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615

    Article  CAS  Google Scholar 

  • Carlsson M, Hu GZ, Ronne H (2018) Gene dosage effects in yeast support broader roles for the LOG1, HAM1 and DUT1 genes in detoxification of nucleotide analogues. PLoS ONE 13:e0196840

    Article  PubMed Central  Google Scholar 

  • Ceballos-Picot I, Le Dantec A, Brassier A, Jais JP, Ledroit M, Cahu J, Ea HK, Daignan-Fornier B, Pinson B (2015) New biomarkers for early diagnosis of Lesch-Nyhan disease revealed by metabolic analysis on a large cohort of patients. Orphanet J Rare Dis 10:7

    Article  PubMed Central  Google Scholar 

  • Ceschin J, Hurlimann HC, Saint-Marc C, Albrecht D, Violo T, Moenner M, Daignan-Fornier B, Pinson B (2015) Disruption of Nucleotide Homeostasis by the Antiproliferative Drug 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside Monophosphate (AICAR). J Biol Chem 290:23947–23959

    Article  CAS  PubMed Central  Google Scholar 

  • Christopher SA, Melnyk S, James SJ, Kruger WD (2002) S-adenosylhomocysteine, but not homocysteine, is toxic to yeast lacking cystathionine beta-synthase. Mol Genet Metab 75:335–343

    Article  CAS  Google Scholar 

  • Daignan-Fornier B, Pinson B (2019) Yeast to study human purine metabolism diseases. Cells 8(1):67. https://doi.org/10.3390/cells8010067

    Article  CAS  PubMed Central  Google Scholar 

  • Desmoucelles C, Pinson B, Saint-Marc C, Daignan-Fornier B (2002) Screening the yeast “disruptome” for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid. J Biol Chem 277:27036–27044

    Article  CAS  Google Scholar 

  • Deutscher D, Meilijson I, Kupiec M, Ruppin E (2006) Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet 38:993–998

    Article  CAS  Google Scholar 

  • Gari E, Piedrafita L, Aldea M, Herrero E (1997) A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13:837–848

    Article  CAS  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  CAS  Google Scholar 

  • Guetsova ML, Crother TR, Taylor MW, Daignan-Fornier B (1999) Isolation and characterization of the Saccharomyces cerevisiae XPT1 gene encoding xanthine phosphoribosyl transferase. J Bacteriol 181:2984–2986

    Article  CAS  PubMed Central  Google Scholar 

  • Hesketh A, Oliver SG (2019) High-energy guanine nucleotides as a signal capable of linking growth to cellular energy status via the control of gene transcription. Curr Genet 65:893–897

    Article  CAS  PubMed Central  Google Scholar 

  • Hesketh A, Vergnano M, Oliver SG (2019) Determination of the global pattern of gene expression in yeast cells by intracellular levels of guanine nucleotides. mBio 10(1):e02500-18. https://doi.org/10.1128/mBio.02500-18

    Article  PubMed Central  Google Scholar 

  • Iglesias-Gato D, Martin-Marcos P, Santos MA, Hinnebusch AG, Tamame M (2011) Guanine nucleotide pool imbalance impairs multiple steps of protein synthesis and disrupts GCN4 translational control in Saccharomyces cerevisiae. Genetics 187:105–122

    Article  CAS  PubMed Central  Google Scholar 

  • Kanai M, Kawata T, Yoshida Y, Kita Y, Ogawa T, Mizunuma M, Watanabe D, Shimoi H, Mizuno A, Yamada O et al (2017) Sake yeast YHR032W/ERC1 haplotype contributes to high S-adenosylmethionine accumulation in sake yeast strains. J Biosci Bioeng 123:8–14

    Article  CAS  PubMed Central  Google Scholar 

  • Knudsen RC, Yall I (1972) Partial purification and characterization of S-adenosylhomocysteine hydrolase isolated from Saccharomyces cerevisiae. J Bacteriol 112:569–575

    Article  CAS  PubMed Central  Google Scholar 

  • Ljungdahl PO, Daignan-Fornier B (2012) Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190:885–929

    Article  CAS  PubMed Central  Google Scholar 

  • Loret MO, Pedersen L, Francois J (2007) Revised procedures for yeast metabolites extraction: application to a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine salvage pathway. Yeast 24:47–60

    Article  CAS  Google Scholar 

  • Mizunuma M, Miyamura K, Hirata D, Yokoyama H, Miyakawa T (2004) Involvement of S-adenosylmethionine in G1 cell-cycle regulation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 101:6086–6091

    Article  CAS  Google Scholar 

  • Pinson B, Vaur S, Sagot I, Coulpier F, Lemoine S, Daignan-Fornier B (2009) Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways. Genes Dev 23:1399–1407

    Article  CAS  PubMed Central  Google Scholar 

  • Rasse-Messenguy F, Fink GR (1973) Feedback-resistant mutants of histidine biosynthesis in yeast. Basic Life Sci 2:85–95

    CAS  Google Scholar 

  • Rebora K, Desmoucelles C, Borne F, Pinson B, Daignan-Fornier B (2001) Yeast AMP pathway genes respond to adenine through regulated synthesis of a metabolic intermediate. Mol Cell Biol 21:7901–7912

    Article  CAS  PubMed Central  Google Scholar 

  • Rebora K, Laloo B, Daignan-Fornier B (2005) Revisiting purine-histidine cross-pathway regulation in Saccharomyces cerevisiae: a central role for a small molecule. Genetics 170:61–70

    Article  CAS  PubMed Central  Google Scholar 

  • Roje S, Chan SY, Kaplan F, Raymond RK, Horne DW, Appling DR, Hanson AD (2002) Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through the methylenetetrahydrofolate reductase reaction in vivo. J Biol Chem 277:4056–4061

    Article  CAS  Google Scholar 

  • Saint-Marc C, Pinson B, Coulpier F, Jourdren L, Lisova O, Daignan-Fornier B (2009) Phenotypic consequences of purine nucleotide imbalance in Saccharomyces cerevisiae. Genetics 183:529–538

    Article  CAS  PubMed Central  Google Scholar 

  • Sumita K, Lo YH, Takeuchi K, Senda M, Kofuji S, Ikeda Y, Terakawa J, Sasaki M, Yoshino H, Majd N et al (2016) The Lipid Kinase PI5P4Kbeta Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis. Mol Cell 61:187–198

    Article  CAS  PubMed Central  Google Scholar 

  • Vander Heiden MG, DeBerardinis RJ (2017) Understanding the Intersections between Metabolism and Cancer Biology. Cell 168:657–669

    Article  CAS  Google Scholar 

  • Visram M, Radulovic M, Steiner S, Malanovic N, Eichmann TO, Wolinski H, Rechberger GN, Tehlivets O (2018) Homocysteine regulates fatty acid and lipid metabolism in yeast. J Biol Chem 293:5544–5555

    Article  CAS  PubMed Central  Google Scholar 

  • Zappia V, Zydek-Cwick R, Schlenk F (1969) The specificity of S-adenosylmethionine derivatives in methyl transfer reactions. J Biol Chem 244:4499–4509

    CAS  Google Scholar 

Download references

Funding

This work was supported by CNRS and Université de Bordeaux.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: D-F; methodology: S-M, C, A, P; formal analysis and investigation: S-M, C, A, P; writing—original draft preparation: D-F, P; writing—review and editing: D-F, P; funding acquisition: D-F; supervision: D-F.

Corresponding author

Correspondence to Bertrand Daignan-Fornier.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saint-Marc, C., Ceschin, J., Almyre, C. et al. Genetic investigation of purine nucleotide imbalance in Saccharomyces cerevisiae. Curr Genet 66, 1163–1177 (2020). https://doi.org/10.1007/s00294-020-01101-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-020-01101-y

Keywords

Navigation