Skip to main content
Log in

Multiscale crack band model for eigenstrain based reduced order homogenization

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A multiscale crack band model is proposed to alleviate spurious mesh size dependence in the solution for a strain softening constitutive model. A continuum damage mechanics-based material model for the constituent phases of a carbon fiber reinforced polymer (CFRP) based composite material is applied to the Eigenstrain based Reduced-order Homogenization framework for multiscale modeling. This paper presents the formulation and demonstrates dissipated energy regularization within the multiscale modeling framework. A key contribution is computationally efficient implementation of multiscale crack band model as user defined subroutine for the commercial software Abaqus. The accuracy of the multiscale crack band model is demonstrated by critical evaluation of the numerical results for CFRP laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Matouš K, Geers MGD, Kouznetsova VG, Gillman A (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 330:192–220

    MathSciNet  Google Scholar 

  2. Department of Defense (2002) Composite materials handbook, volume 2. Polymer matrix composites materials properties, 1st edn. SAE International

  3. Clay SB, Engelstad SP (2017) Benchmarking of composite progressive damage analysis methods: the background. J Compos Mater 51(10):1325–1331

    Google Scholar 

  4. Liu X, Furrer D, Kosters J, Holmes J (2018) Vision 2040: a roadmap for integrated, multiscale modeling and simulation of materials and systems. Technical Report NASA/CR-2018-219771, E-19477, GRC-E-DAA-TN52454, NASA, March 01 2018

  5. Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781

    Google Scholar 

  6. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Google Scholar 

  7. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. In: Dryden HL, von Kármán T, Kuerti G, van den Dungen FH, Howarth L (eds) The mathematical theory of equilibrium cracks in brittle fracture. Advances in applied mechanics, vol 7. Elsevier, Amsterdam, pp 55–129

    Google Scholar 

  8. Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mater Struct 16(3):155–177

    Google Scholar 

  9. Bažant ZP (1984) Imbricate continuum and its variational derivation. J Eng Mech 110(12):1693–1712

    Google Scholar 

  10. Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. J Eng Mech 113:1512–1533

    MATH  Google Scholar 

  11. Jirásek M (1998) Nonlocal models for damage and fracture: comparison of approaches. Int J Solids Struct 35(31):4133–4145

    MathSciNet  MATH  Google Scholar 

  12. de Borst R, Mühlhaus H-B (1992) Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Methods Eng 35(3):521–539

    MATH  Google Scholar 

  13. Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39(19):3391–3403

    MATH  Google Scholar 

  14. Geers MGD (1997) Experimental analysis and computational modelling of damage and fracture. PhD thesis, Technische Universiteit Eindhoven

  15. Jirásek M, Rolshoven S (2009) Localization properties of strain-softening gradient plasticity models. Part I: Strain-gradient theories. Int J Solids Struct 46:2225–2238

    MATH  Google Scholar 

  16. Jirásek M, Rolshoven S (2009) Localization properties of strain-softening gradient plasticity models. Part II: Theories with gradients of internal variables. Int J Solids Struct 46:2239–2254

    MATH  Google Scholar 

  17. Pietruszczak S, Mroz Z (1981) Finite element analysis of deformation of strain softening materials. Int J Numer Methods Eng 17:327–334

    MATH  Google Scholar 

  18. Jirásek M, Bauer M (2012) Numerical aspects of the crack band approach. Comput Struct 110–111:60–78

    Google Scholar 

  19. Slobbe AT, Hendriks MAN, Rots JG (2013) Systematic assessment of directional mesh bias with periodic boundary conditions: applied to the crack band model. Eng Fract Mech 109:186–208

    Google Scholar 

  20. Červenka J, Červenka V, Laserna S (2018) On crack band model in finite element analysis of concrete fracture in engineering practice. Eng Fract Mech 197:27–47

    Google Scholar 

  21. Pinho ST, Iannucci L, Robinson P (2006) Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation. Compos Part A Appl Sci Manuf 37(5):766–777

    Google Scholar 

  22. Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates. Part I: Constitutive model. Mech Mater 39(10):897–908

    Google Scholar 

  23. Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates. Part II: Computational implementation and validation. Mech Mater 39(10):909–919

    Google Scholar 

  24. Reinoso J, Catalanotti G, Blázquez A, Areias P, Camanho PP, París F (2017) A consistent anisotropic damage model for laminated fiber-reinforced composites using the 3D-version of the Puck failure criterion. Int J Solids Struct 126–127:37–53

    Google Scholar 

  25. Hoos K, Iarve EV, Braginsky M, Zhou E, Mollenhauer DH (2017) Static strength prediction in laminated composites by using discrete damage modeling. J Compos Mater 51(10):1473–1492

    Google Scholar 

  26. Cui X, Fang E, Lua J (2017) A discrete crack network toolkit for Abaqus for damage and residual strength prediction of laminated composites. J Compos Mater 51(10):1355–1378

    Google Scholar 

  27. Kanouté P, Boso DP, Chaboche JL, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16(1):31–75

    MATH  Google Scholar 

  28. Zhang B, Yang Z, Wu Y, Sun H (2010) Hierarchical multiscale modeling of failure in unidirectional fiber-reinforced plastic matrix composite (1980–2015). Mater Des 31(5):2312–2318

    Google Scholar 

  29. Swindeman MJ, Iarve EV, Brockman RA, Mollenhauer DH, Hallett SR (2013) Strength prediction in open hole composite laminates by using Discrete Damage Modeling. AIAA J 51(4):936–945

    Google Scholar 

  30. Ricks Jr TM, Lacy TE, Bednarcyk BA, Arnold SM, Hutchins JW (2014) A multiscale progressive failure modeling methodology for composites that includes fiber strength stochastics. Techreport, NASA Glenn Research Center, May 2014

  31. Zhuang L, Talreja R, Varna J (2016) Tensile failure of unidirectional composites from a local fracture plane. Compos Sci Technol 133:119–127

    Google Scholar 

  32. Bahei-El-Din YA, Micheal A (2017) A multiscale model for damage progression and detection in piezo/pyroelectric composite laminates. Mech Mater 113:77–88

    Google Scholar 

  33. Soutis C, Turkmen D (1997) Moisture and temperature effects of the compressive failure of cfrp unidirectional laminates. J Compos Mater 31(8):832–849

    Google Scholar 

  34. Gilat A, Goldberg RK, Roberts GD (2007) Strain rate sensitivity of epoxy resin in tensile and shear loading. J Aerosp Eng

  35. Littell JD, Ruggeri CR, Goldberg RK, Roberts GD, Arnold WA, Binienda WK (2008) Measurement of epoxy resin tension, compression, and shear stress-strain curves over a wide range of strain rates using small test specimens. J Aerosp Eng 2008:162–173

    Google Scholar 

  36. Park IK, Park KJ, Kim SJ (2015) Rate-dependent damage model for polymeric composites under in-plane shear dynamic loading. Comput Mater Sci 96:506–519

    Google Scholar 

  37. Salavatian M, Smith LV (2015) An investigation of matrix damage in composite laminates using continuum damage mechanics. Compos Struct 131:565–573

    Google Scholar 

  38. Laurin F, Carrère N, Maire J-F (2007) A multiscale progressive failure approach for composite laminates based on thermodynamical viscoelastic and damage models. Compos A Appl Sci Manuf 38(1):198–209

    Google Scholar 

  39. Pineda EJ, Bednarcyk BA, Arnold SM (2016) Validated progressive damage analysis of simple polymer matrix composite laminates exhibiting matrix microdamage: comparing macromechanics and micromechanics. Compos Sci Technol 133:184–191

    Google Scholar 

  40. Massarwa E, Aboudi J, Haj-Ali R (2018) A multiscale progressive damage analysis for laminated composite structures using the parametric HFGMC micromechanics. Compos Struct 188:159–172

    Google Scholar 

  41. Gitman IM, Askes H, Sluys LJ (2007) Representative volume: existence and size determination. Eng Fract Mech 74(16):2518–2534

    Google Scholar 

  42. Bažant Zdeněk P (2010) Can multiscale-multiphysics methods predict softening damage and structural failure? Int J Multiscale Comput Eng 8(1):61–67

    Google Scholar 

  43. Oskay C, Fish J (2007) Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput Methods Appl Mech Eng 196:1216–1243

    MathSciNet  MATH  Google Scholar 

  44. Crouch RD, Oskay C (2010) Symmetric mesomechanical model for failure analysis of heterogeneous materials. Int J Multiscale Comput Eng 8:447–461

    Google Scholar 

  45. Bogdanor MJ, Oskay C (2017) Prediction of progressive damage and strength of IM7/977-3 composites using the Eigendeformation-based homogenization approach: static loading. J Compos Mater 51(10):1455–1472

    Google Scholar 

  46. Pineda EJ, Bednarcyk BA, Waas AM, Arnold SM (2013) Progressive failure of a unidirectional fiber-reinforced composite using the method of cells: discretization objective computational results. Int J Solids Struct 50(9):1203–1216

    Google Scholar 

  47. Heinrich C, Waas AM (2013) Investigation of progressive damage and fracture in laminated composites using the Smeared Crack Approach. Comput Mater Continua 35(2):155–181

    Google Scholar 

  48. Otero F, Martinez X, Oller S, Salomón O (2015) An efficient multi-scale method for non-linear analysis of composite structures. Compos Struct 131:707–719

    Google Scholar 

  49. Oskay C, Su Z, Kapusuzoglu B (2020) Discrete eigenseparation-based reduced order homogenization method for failure modeling of composite materials. Comput Methods Appl Mech Eng 359:112656

    MathSciNet  MATH  Google Scholar 

  50. Bhattacharyya R, Basu PK (2020) Multiscale progressive damage analysis of CFRP composites using a mechanics based constitutive relation. Compos Struct 235:111759

    Google Scholar 

  51. Nemat-Nasser S, Hori M (1998) Micromechanics: overall properties of heterogeneous materials. North Holland, Amsterdam

    MATH  Google Scholar 

  52. Terada K, Hori M, Kyoya T, Kikuchi N (2000) Simulation of the multi-scale convergence in computational homogenization approaches. Int J Solids Struct 37(16):2285–2311

    MATH  Google Scholar 

  53. Zohdi TI, Wriggers P (2005) An introduction to computational micromechanics, 1st edn. Springer Berlin Heidelberg, Berlin

    MATH  Google Scholar 

  54. Ghosh S, Lee K, Moorthy S (1995) Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method. Int J Solids Struct 32(1):27–62

    MathSciNet  MATH  Google Scholar 

  55. Tyrus JM, Gosz M, DeSantiago E (2007) A local finite element implementation for imposing periodic boundary conditions on composite micromechanical models. Int J Solids Struct 44(9):2972–2989

    MATH  Google Scholar 

  56. Larsson F, Runesson K, Saroukhani S, Vafadari R (2011) Computational homogenization based on a weak format of micro-periodicity for RVE-problems. Comput Methods Appl Mech Eng 200(1):11–26

    MathSciNet  MATH  Google Scholar 

  57. Fish J, Fan R (2008) Mathematical homogenization of nonperiodic heterogeneous media subjected to large deformation transient loading. Int J Numer Methods Eng 76(7):1044–1064

    MathSciNet  MATH  Google Scholar 

  58. Feyel F, Chaboche JL (2000) FE\(^2\) multiscale approach for modelling the elastoviscoplastic behavior of long fiber SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330

    MATH  Google Scholar 

  59. Rots JG (1988) Computational modeling of concrete fracture. PhD thesis, Delft University of Technology

  60. Cervenka V (1970) Inelastic finite element analysis of reinforced concrete panels. PhD thesis, University of Colorado

  61. Oliver J (1989) A consistent characteristic length for smeared cracking models. Int J Numer Methods Eng 28:461–474

    MATH  Google Scholar 

  62. Govindjee S, Kay GJ, Simo JC (1995) Anisotropic modelling and numerical simulation of brittle damage in concrete. Int J Numer Methods Eng 38(21):3611–3633

    MATH  Google Scholar 

  63. Slobbe AT (2015) Propagation and band width of smeared cracks. PhD thesis, TU Delft, February 2015

  64. Clay SB, Knoth PM (2017) Experimental results of quasi-static testing for calibration and validation of composite progressive damage analysis methods. J Compos Mater 51(10):1333–1353

    Google Scholar 

  65. O’Higgins RM, McCarthy MA, McCarthy CT (2008) Comparison of open hole tension characteristics of high strength glass and carbon fibre-reinforced composite materials. Compos Sci Technol 68(13):2770–2778 (Directions in Damage and Durability of Composite Materials, with regular papers)

    Google Scholar 

Download references

Acknowledgements

Partial financial support provided by the Aerospace Systems Directorate of the Air Force Research Laboratory (Contract No: GS04T09DBC0017 through Engility Corporation) to the first author is acknowledged. Valuable comments by Dr. Stephen B. Clay of AFRL regarding progressive failure and fracture process zone of composites is acknowledged. In addition, Dr. Caglar Oskay’s intellectual support and access to HPC resources to the first author is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prodyot K. Basu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of multiscale crack band model

Appendix: Derivation of multiscale crack band model

In order to simplify the computation of the fracture strain, the part of the fracture energy within the softening regime is approximated in a linear fashion:

$$\begin{aligned} \widetilde{G}_\text {f}^{\text {N}(2)}(\epsilon ^\text {N}_\text {f})=\frac{1}{2}\big (\epsilon ^\text {N}_\text {f}-\epsilon ^\text {N}_\text {tr}\big )\bigg [1-\Phi (\upsilon ^\text {N}_\text {tr})\bigg ]E\epsilon ^\text {N}_\text {tr} \end{aligned}$$
(A.1)

The fracture energy for a reference mesh size, \(h_{0}\), for uniaxial loading case is expressed as:

$$\begin{aligned} G^\text {N}_\text {f}\Big |_{h_0}=\frac{wh_{0}}{l}\bigg [\widetilde{G}^{\text {N}(1)}_\text {f} +\widetilde{G}^{\text {N}(2)}_\text {f} \Big (\epsilon ^\text {N}_\text {f}\Big |_{h_0}\Big )\bigg ] \end{aligned}$$
(A.2)

Similarly, the fracture energy for any arbitrary mesh size, h, can be given by:

$$\begin{aligned} G^\text {N}_\text {f}=\frac{wh}{l}\bigg [\widetilde{G}^{\text {N}(1)}_\text {f} +\widetilde{G}^{\text {N}(2)}_\text {f} \bigg ] \end{aligned}$$
(A.3)

The area in softening regime for any arbitrary mesh size, h, is scaled with a parameter \(\widetilde{c}\), as the fracture energy remains conserved. Hence, for any mesh size, h, the fracture energy due to softening can be expressed by Eq. A.4.

$$\begin{aligned} \widetilde{G}^{\text {N}(2)}_\text {f}=\frac{1}{\widetilde{c}}\bigg [ \frac{l}{wh}{G}^\text {N}_\text {f}-\widetilde{G}_\text {f}^\text {N(1)} \bigg ] \end{aligned}$$
(A.4)

Following the fact that, energy in the hardening regime remains same, substitution of \(\widetilde{G}^\text {N(1)}_\text {f}\) from Eqs. A.2 to A.4 leads to:

$$\begin{aligned} \widetilde{G}^{\text {N}(2)}_\text {f}=\frac{1}{\widetilde{c}}\bigg [ \frac{l}{wh}{G}^\text {N}_\text {f}- \frac{l}{wh_0}{G}^\text {N}_\text {f} + \widetilde{c}~\tilde{G}^{\text {N}(2)}_\text {f} \bigg ] \end{aligned}$$
(A.5)

Now, substituting \({G}^\text {N}_\text {f}\) from Eq. A.2 into Eq. A.5, the fracture energy under softening for any mesh size h will lead to Eq. A.6

$$\begin{aligned} \widetilde{G}^{\text {N}(2)}_\text {f}= & {} \dfrac{1}{\widetilde{c}}\frac{h_0}{h}~\bigg (\widetilde{G}^{\text {N}(1)}_\text {f} +\widetilde{G}^{\text {N}(2)}_\text {f}\Big (\epsilon ^\text {N}_\text {f}\Big |_{h_0}\Big )\bigg )\nonumber \\&\quad - \dfrac{1}{\widetilde{c}}~\bigg (\tilde{G}^{\text {N}(1)}_\text {f} +\widetilde{G}^{\text {N}(2)}_\text {f}\Big (\epsilon ^\text {N}_\text {f}\Big |_{h_0}\Big )\bigg ) + \widetilde{G}^{\text {N}(2)}_\text {f}\Big (\epsilon ^\text {N}_\text {f}\Big |_{h_0}\Big )\nonumber \\ \end{aligned}$$
(A.6)

Rearranging the fracture energy terms in Eq. A.6 under conditions of hardening and softening, yields Eq. A.7.

$$\begin{aligned} \widetilde{G}^{\text {N}(2)}_\text {f}= & {} \dfrac{1}{\widetilde{c}}\bigg (\frac{h_{0}}{h}-1\bigg )\widetilde{G}^{\text {N}(1)}_\text {f}\nonumber \\&\quad +\Bigg [1+\dfrac{1}{\tilde{c}}\bigg (\frac{h_{0}}{h}-1\bigg )\Bigg ]\widetilde{G}_\text {f}^{\text {N}(2)}\Big (\epsilon ^\text {N}_\text {f}\Big |_{h_0}\Big ) \end{aligned}$$
(A.7)

Finally, the dissipated energy regularized failure strains can be expressed in terms of \(\widetilde{G}^\text {N(2)}_\text {f}\) as:

$$\begin{aligned} \epsilon ^\text {N}_\text {f}=\epsilon ^\text {N}_\text {tr} + 2\dfrac{ \widetilde{G}_\text {f}^{\text {N}(2)}}{\Big [1-\Phi (\upsilon ^\text {N}_\text {tr})\Big ]E\epsilon ^\text {N}_\text {tr}} \end{aligned}$$
(A.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, R., Basu, P.K. Multiscale crack band model for eigenstrain based reduced order homogenization. Comput Mech 66, 1237–1255 (2020). https://doi.org/10.1007/s00466-020-01896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01896-0

Keywords

Navigation