Skip to main content
Log in

Thermal stability and dielectric relaxation behavior of in situ prepared poly(vinyl alcohol) (PVA)-reduced graphene oxide (RGO) composites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(vinyl alcohol) (PVA)-reduced graphene oxide (RGO) composite films have been prepared via in situ reduction of graphene oxide (GO) inside PVA matrix. In order to study microstructure and morphology of prepared PVA-RGO composite films, transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, UV-Visible absorption spectroscopy, X-ray diffraction (XRD) technique, and Raman spectroscopy were utilized. Thermogravimetric analysis (TGA) depicts the increase in thermal stability of PVA with increasing loading of RGO. The dielectric properties of composites were explored in frequency range 100 Hz–2.5 MHz which depicts increase in dielectric permittivity and ac conductivity of composite films with increasing RGO loading. The dielectric relaxation behavior and dispersion parameters of composite films were analyzed using Cole-Cole plots using a MATLAB program based on the Havrilak-Negami (HN) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1571. https://doi.org/10.1177/0021998306067321

    Article  CAS  Google Scholar 

  2. Florea RM, Carcea I (2012) Polymer matrix composites – routes and properties. Int J Adv Manuf Tech 4:59–64. http://www.ijmmt.ro/vol4no12012/09___Florea_Raluca.pdf

  3. Harris B (1999) Engineering composite materials (The institute of materials London) pp. 5-182.

  4. Tanaka T, Montanari GC, Mulhaupt R (2004) Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies. IEEE Trans Dielectr Electr Insul 11(5):763–784. https://doi.org/10.1109/TDEI.2004.1349782

    Article  CAS  Google Scholar 

  5. Otero TF, Sansieña JM (1998) Advanced materials soft and wet conducting polymers for artificial muscles 10(6):491–494. https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<491::AID-ADMA491>3.0.CO;2-Q

  6. Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMC) as biomimetic sensors and actuators- artificial muscles. Smart Mater Struct 7:R15–R30. https://doi.org/10.1088/0964-1726/7/6/001

    Article  CAS  Google Scholar 

  7. Otero TF, Martinez JG (2015) Physical and chemical awareness from sensing polymeric artificial muscles: Experiments and modelling. Prog Polym Sci 44:62–78. https://doi.org/10.1016/j.progpolymsci.2014.09.002

    Article  CAS  Google Scholar 

  8. Otero TF, Martinez JG (2014) Ionic exchanges, structural movements and driven reactions in conducting polymers from bending artificial muscles. Sensors Actuators B Chem 199:27–30. https://doi.org/10.1016/j.snb.2014.03.053

    Article  CAS  Google Scholar 

  9. Peppas NA, Merrill EW (1977) Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical application. J Biomed Mater Res 11(3):423–434. https://doi.org/10.1002/jbm.820110309

    Article  CAS  PubMed  Google Scholar 

  10. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn HJ, Zur Loye HC (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4):1697–1733. https://doi.org/10.3390/ma2041697

    Article  CAS  PubMed Central  Google Scholar 

  11. Zhang QM, Li H, Poh M, Xia F, Cheng ZY, Xu H, Huang C (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419(6904):284–287. https://doi.org/10.1038/nature01021

    Article  CAS  PubMed  Google Scholar 

  12. Huang C, Zhang QM, Su J (2003) High-dielectric-constant all-polymer percolative composites. Appl Phys Lett 82(20):3502–3504. https://doi.org/10.1063/1.1575505

    Article  CAS  Google Scholar 

  13. Cho SD, Jang KW, Hyun JG, Lee S, Paik KW, Kim H, Kim JH (2005) Epoxy/BaTiO3composite films and pastes for high dielectric constant and low-tolerance embedded capacitors fabrication in organic substrates. IEEE Trans Electron Packag Manuf 28:297–303. https://doi.org/10.1109/TEPM.2005.856535

    Article  CAS  Google Scholar 

  14. Khutia M, Joshi GM, Deshmukh K, Pandey M (2015) Optimization of dielectric constant of polycarbonate/polystyrene modified blend by ceramic metal oxide. Polym-Plast Technol Eng 54(4):383–389. https://doi.org/10.1080/03602559.2014.961082

    Article  CAS  Google Scholar 

  15. Keller T (2001) Recent all-composite and hybrid fiber reinforced polymer bridges and buildings. Prog Struct Eng Mater 3(2):132–140. https://doi.org/10.1002/pse.66

    Article  Google Scholar 

  16. Huang C, Zhang QM, DeBotton G, Bhattacharya K (2004) All-organic dielectric-percolative three-component composite materials with high electromechanical response. Appl Phys Lett 84(22):4391–4393. https://doi.org/10.1063/1.1757632

    Article  CAS  Google Scholar 

  17. Dang ZM, Lin YH, Nan CW (2003) Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 15(19):1625–1629. https://doi.org/10.1002/adma.200304911

    Article  CAS  Google Scholar 

  18. Deshmukh K, Ahamed MB, Shah AH, Pandey M, Joshi GM (2015) Morphology, ionic conductivity, and impedance spectroscopy studies of graphene oxide-filled polyvinylchloride nanocomposites. Polym-Plast Technol Eng 54(16):1743–1752. https://doi.org/10.1080/03602559.2015.1050515

    Article  CAS  Google Scholar 

  19. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube –polymer composites: strength and weakness. Adv Mater 12(10):750–753. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6

    Article  CAS  Google Scholar 

  20. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912. https://doi.org/10.1016/S0266-3538(01)00094-X

    Article  CAS  Google Scholar 

  21. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  22. Shen Y, Lin Y, Li M, Nan CW (2007) High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv Mater 19(10):1418–1422. https://doi.org/10.1002/adma.200602097

    Article  CAS  Google Scholar 

  23. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331. https://doi.org/10.1038/nnano.2008.96

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Perez L, Herranz MÁ, Martin N (2013) The chemistry of pristine graphene. Chem Commun 49(36):3721–3735. https://doi.org/10.1039/C3CC38950B

    Article  CAS  Google Scholar 

  25. Nada AA, Tantawy HR, Elsayed MA, Bechelany M, Elmowafy ME (2018) Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution. Solid State Sci 78:116–125. https://doi.org/10.1016/j.solidstatesciences.2018.02.014

    Article  CAS  Google Scholar 

  26. Diab KR, El-Maghrabi HH, Nada AA, Youssef AM, Hamdy A, Roualdes S, Abd El-Wahab S (2018) Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. J Photochem Photobiol A Chem 365:86–93. https://doi.org/10.1016/j.jphotochem.2018.07.040

    Article  CAS  Google Scholar 

  27. El-Maghrabi HH, Abdelmaged SM, Nada AA, Zahran F, Abd El-Wahab S, Yahea D, Hussein GM, Atrees MS (2017) Magnetic graphene based nanocomposite for uranium scavenging. J Hazard Mater 322:370–379. https://doi.org/10.1016/j.jhazmat.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  28. Abd Elhamid M, Shawkey H, Nada AA, Bechelany M (2019) Anomalous dielectric constant value of graphene oxide/Polyvinyl alcohol thin film. Solid State Sci 94:28–34. https://doi.org/10.1016/j.solidstatesciences.2019.05.013

    Article  CAS  Google Scholar 

  29. Deshmukh K, Ahamed MB, Pasha SK, Deshmukh RR, Bhagat PR (2015) Highly dispersible graphene oxide reinforced polypyrrole/polyvinyl alcohol blend nanocomposites with high dielectric constant and low dielectric loss. RSC Adv 5(76):61933–61945. https://doi.org/10.1039/C5RA11242G

    Article  CAS  Google Scholar 

  30. Joshi GM, Deshmukh K (2016) Study of conjugated polymer/graphene oxide nanocomposites as flexible dielectric medium. J Mater Sci Mater Electron 27(4):3397–3409. https://doi.org/10.1007/s10854-015-4172-z

    Article  CAS  Google Scholar 

  31. Kashyap S, Pratihar SK, Behera SK (2016) Strong and ductile graphene oxide reinforced PVA nanocomposites. J Alloys Compd 684:254–260. https://doi.org/10.1016/j.jallcom.2016.05.162

    Article  CAS  Google Scholar 

  32. Pandey M, Joshi GM, Deshmukh K, Khutia M, Ghosh NN (2014) Optimized AC conductivity correlated to structure, morphology and thermal properties of PVDF/PVA/Nafion composites. Ionics 20(10):1427–1433. https://doi.org/10.1007/s11581-014-1111-6

    Article  CAS  Google Scholar 

  33. Saxena AK, Marler J, Benvenuto M, Willital GH, Vacanti JP (1999) Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: Preliminary studies. Tissue Eng 5(6):525–531. https://doi.org/10.1089/ten.1999.5.525

    Article  CAS  PubMed  Google Scholar 

  34. Li P, Kim NH, Bhadra S, Lee JH (2009) Electroresponsive property of novel poly(acrylate-acryloyloxyethyltrimethylammoniumchloride)/clay nanocomposite hydrogels. Adv Mater Res 79:2263–2266. https://doi.org/10.4028/www.scientific.net/AMR.79-82.2263

    Article  CAS  Google Scholar 

  35. Tantis I, Psarras GC, Tasis D (2012) Functionalized graphene – poly(vinyl alcohol) nanocomposites: Physical and dielectric properties. Express Polym Lett 6(4):283–292. https://doi.org/10.3144/expresspolymlett.2012.31

    Article  CAS  Google Scholar 

  36. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Pasha SKK, Polu AR, Chidambaram K (2017) Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 134(5):44427. https://doi.org/10.1002/app.44427

    Article  CAS  Google Scholar 

  37. Joshi A, Bajaj A, Singh R, Alegaonkar PS, Balasubramanian K, Datar S (2013) Graphene nanoribbon–PVA composite as EMI shielding material in the X band. Nanotechnology 24(45):455705. https://doi.org/10.1088/0957-4484/24/45/455705

    Article  CAS  PubMed  Google Scholar 

  38. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Pasha SK, Deshmukh RR, Chidambaram K (2017) Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics. Mater Chem Phys 186:188–201. https://doi.org/10.1016/j.matchemphys.2016.10.044

    Article  CAS  Google Scholar 

  39. Rao BB, Yadav P, Aepuru R, Panda HS, Ogale S, Kale SN (2015) Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe 3 O 4 nano-fillers: an interface-mediated superior dielectric and EMI shielding performance. Phys Chem Chem Phys 17(28):18353–18363. https://doi.org/10.1039/C5CP02476E

    Article  CAS  PubMed  Google Scholar 

  40. Aslam M, Kalyar MA, Raza ZA (2017) Fabrication of reduced graphene oxide nanosheets doped PVA composite films for tailoring their opto-mechanical properties. Applied Physics A 123(6):424. https://doi.org/10.1007/s00339-017-1035-x

    Article  CAS  Google Scholar 

  41. Wang D, Bao Y, Zha JW, Zhao J, Dang ZM, Hu GH (2012) Improved dielectric properties of nanocomposites based on poly (vinylidene fluoride) and poly (vinyl alcohol)-functionalized graphene. ACS Appl Mater Interfaces 4(11):6273–6279. https://doi.org/10.1021/am3018652

    Article  CAS  PubMed  Google Scholar 

  42. Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SK, Sadasivuni KK, Ponnamma D, Chidambaram K (2016) Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application. Eur Polym J 76:14. https://doi.org/10.1016/j.eurpolymj.2016.01.022

    Article  CAS  Google Scholar 

  43. Kandhol G, Wadhwa H, Chand S, Mahendia S, Kumar S (2019) Study of dielectric relaxation behavior of composites of poly (vinyl alcohol) (PVA) and reduced graphene oxide (RGO). Vacuum 160:384–393. https://doi.org/10.1016/j.vacuum.2018.11.051

    Article  CAS  Google Scholar 

  44. Zhou TN, Qi XD, Fu Q (2013) The preparation of the poly(vinyl alcohol)/graphene nanocomposites with low percolation threshold and high electrical conductivity by using large-area reduced graphene oxide sheets. Express Polym Lett 7:747–755. https://doi.org/10.3144/expresspolymlett.2013.72

    Article  CAS  Google Scholar 

  45. Wang J, Wang X, Xu C, Zhang M, Shang X (2011) Preparation of graphene/poly(vinyl alcohol) composites with enhanced mechanical properties and water resistance. Polym Int 60(5):816–822. https://doi.org/10.1002/pi.3025

    Article  CAS  Google Scholar 

  46. Hummers JR, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  47. Jiang L, Shen XP, Wu JL, Shen KC (2010) Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. J Appl Polym Sci 118(1):275–279. https://doi.org/10.1002/app.32278

    Article  CAS  Google Scholar 

  48. Havriliak S, Negami SA (1966) A complex plane analysis of α-dispersions in some polymer systems. In J Polym Sci C: Polym Symposia 14:99–117. https://doi.org/10.1002/polc.5070140111

  49. Havriliak S, Negami SA (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210. https://doi.org/10.1016/0032-3861(67)90021-3

    Article  CAS  Google Scholar 

  50. Salman F, Khalil R, Hazaa H (2014) Dielectric studies and Cole-Cole plot analysis of silver-ion conducting glasses. Adv J Phys Sc 3:1–9

    Article  Google Scholar 

  51. Lai Q, Zhu S, Luo X, Zou M, Huang S (2012) Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv 2(3):032146(1-5). https://doi.org/10.1063/1.4747817

    Article  CAS  Google Scholar 

  52. Ramya CS, Savitha T, Selvasekarapandian S, Hirankumar G (2005) Transport mechanism of Cu-ion conducting PVA based solid-polymer electrolyte. Ionics 11:436–441. https://doi.org/10.1007/BF02430262

    Article  CAS  Google Scholar 

  53. Mahendia S, Tomar AK, Kumar S (2011) Nano-Ag doping induced changes in optical and electrical behaviour of PVA films. Mater Sci Eng B 176(7):530–534. https://doi.org/10.1016/j.mseb.2011.01.008

    Article  CAS  Google Scholar 

  54. Yang S, Yue W, Huang D, Chen C, Lin H, Yang XA (2012) A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv 2(23):8827–8832. https://doi.org/10.1039/C2RA20746J

    Article  CAS  Google Scholar 

  55. Lu J, Li Y, Li S, Jiang SP (2016) Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells. Sci Rep 6:21530. https://doi.org/10.1038/srep21530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Salavagione HJ, Martínez G, Gómez MA (2009) Synthesis of poly (vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J Mater Chem 19(28):5027–5032. https://doi.org/10.1039/B904232F

    Article  CAS  Google Scholar 

  57. Tong X, Wang H, Wang G, Wan L, Ren Z, Bai J, Bai J (2011) Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries. J Solid State Chem 184(5):982–989. https://doi.org/10.1016/j.jssc.2011.03.004

    Article  CAS  Google Scholar 

  58. Yao ZL, Braidy N, Botton GA, Adronov A (2003) Polymerization from the surface of single-walled carbon nanotubes − preparation and characterization of nanocomposites. J Am Chem Soc 125:16015. https://doi.org/10.1021/ja037564y

    Article  CAS  PubMed  Google Scholar 

  59. Ricciardi R, Auriemma F, De Rosa C, Lauprêtre F (2004) X-ray diffraction analysis of poly (vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37(5):1921–1927. https://doi.org/10.1021/ma035663q

    Article  CAS  Google Scholar 

  60. Thayumanavan N, Tambe P, Joshi G, Shukla M (2014) Effect of sodium alginate modification of graphene (by ‘anion-π’ type of interaction) on the mechanical and thermal properties of polyvinyl alcohol (PVA) nanocomposites. Compos Interfaces 21(6):487–506. https://doi.org/10.1080/15685543.2014.879512

  61. Tian J, Liu S, Zhang Y, Li H, Wang L, Luo Y, Sun X (2012) Environmentally friendly, one-pot synthesis of Ag nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation. Inorg Chem 51(8):4742–4746. https://doi.org/10.1021/ic300332x

    Article  CAS  PubMed  Google Scholar 

  62. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  63. Marka SK, Sindam B, Raju KJ, Srikanth VV (2015) Flexible few-layered graphene/poly vinyl alcohol composite sheets: synthesis, characterization and EMI shielding in X-band through the absorption mechanism. RSC Adv 5(46):36498–36506. https://doi.org/10.1039/C5RA04038H

    Article  CAS  Google Scholar 

  64. Cao J, Chen C, Chen K, Lu Q, Wang Q, Zhou P, Liu D, Li S, Niu Z, Chen J (2017) High-strength graphene composite films by molecular level couplings for flexible supercapacitors with high volumetric capacitance. J Mater Chem A 5(29):15008–15016. https://doi.org/10.1039/c7ta04920j

    Article  CAS  Google Scholar 

  65. Wang X, Liu X, Yuan H, Liu H, Liu C, Li T, Yan C, Yan X, Shen C, Guo Z (2018) Non-covalently functionalized graphene strengthened poly (vinyl alcohol). Mater Des 139:372–379. https://doi.org/10.1016/j.matdes.2017.11.023

    Article  CAS  Google Scholar 

  66. Ren PG, Yan DX, Ji X, Chen T, Li ZM (2010) Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22(5):055705. https://doi.org/10.1088/0957-4484/22/5/055705

    Article  CAS  PubMed  Google Scholar 

  67. Gullis CF and Hirshler MM (1981) In the combustion of organic polymers. Claredon.

  68. Peng Z, Kong LX, Li SD, Chen Y, Huang MF (2007) Self-assembled natural rubber/silica nanocomposites: its preparation and characterization. Compos Sci Technol 67:3130–3139. https://doi.org/10.1016/j.compscitech.2007.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guirguis OW, Moselhey MT (2012) Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Nat Sci 4:57–67. https://doi.org/10.4236/ns.2012.41009

    Article  CAS  Google Scholar 

  70. Ren PG, Yan DX, Ji X, Chen T, Li ZM (2011) Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22:055705:8. https://doi.org/10.1088/0957-4484/22/5/055705

    Article  CAS  Google Scholar 

  71. He LX, Tjong SC (2013) Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Res Lett 8(7):132. https://doi.org/10.1186/1556-276X-8-132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shang JW, Zhang YH, Yu L, Shen B, Lv FZ, Chu PK (2012) Fabrication and dielectric properties of oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets. Mater Chem Phys 134:867–874. https://doi.org/10.1016/j.matchemphys.2012.03.082

    Article  CAS  Google Scholar 

  73. El-Sayed S, Mahmoud KH, Fatah AA, Hassen A (2011) TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Physica B 406:4068–4076. https://doi.org/10.1016/j.physb.2011.07.050

    Article  CAS  Google Scholar 

  74. Kao KC (2004) Dielectric phenomena in solids with emphasis on physical concepts of electronic processes (Elsevier Academic Press) pp. 94-96.

  75. Vo HT, Shi FG (2002) Towards model-based engineering of optoelectronic packaging materials: dielectric constant modeling. Microelectron J 33:409–415. https://doi.org/10.1016/S0026-2692(02)00010-1

    Article  CAS  Google Scholar 

  76. Psarras GC (2006) Hopping conductivity in polymer matrix–metal particles composites. Compos Part A: Appl Sci Manuf 37:1545–1553. https://doi.org/10.1016/j.compositesa.2005.11.004

  77. Todd MG, Shi FG (2003) Characterizing the interphase dielectric constant of polymer composite materials: effect of chemical coupling agents. J Appl Phys 94:4551–4557. https://doi.org/10.1063/1.1604961

    Article  CAS  Google Scholar 

  78. Psarras GC and Mai YM (2010) Conductivity and dielectric characterization of polymer nanocomposites, Polymer nanocomposites: physical properties and applications. (eds.: Tjong S C, Mai Y W) (Cambridge: Woodhead Publishing Limited) pp. 31-69.

  79. Ahad N, Saion E, Gharibshahi E (2012) Structural, thermal, and electrical properties of PVA-sodium salicylate solid composite polymer electrolyte. J Nanomater 857569:8. https://doi.org/10.1155/2012/857569

  80. Psarras GC (2007) Charge transport properties in carbon black/polymer composites. J Polym Sci Part B: Pol Phys 45:2535–2545. https://doi.org/10.1002/polb.21278

    Article  CAS  Google Scholar 

  81. Alig I, Lellinger D, Dudkin SM, Pötschke P (2007) Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: recovery after shear and crystallization. Polymer 48:1020–1029. https://doi.org/10.1016/j.polymer.2006.12.035

    Article  CAS  Google Scholar 

  82. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  83. Mahendia S, Tomar AK, Kumar S (2010) Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J Alloys Compd 508:406–411. https://doi.org/10.1016/j.jallcom.2010.08.075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly grateful to the UGC-SAP (DRS) and SERB-DST Project for funding Department of Physics, K. U. Kurukshetra for procuring the instrumentation facilities in the Department. Authors are also thankful to the Centre for Advance Research in Material Science, K.U.K. funded by RUSA 2.0 Grant from MHRD, New Delhi, India. The project funders were not directly involved in the writing of this article. Further, authors are grateful to Dr. N.P. Lalla and Dr. Mukul Gupta of UGC-DAE, CSR, Indore, for their help and valuable suggestions for TEM and XRD measurements. Authors are thankful to Prof. Vinay Gupta of Dept. of Physics and Astrophysics, Delhi University, New Delhi, for their help in Raman measurements. Authors are highly thankful to Dr. P. K. Diwan of University Institute Engineering and Technology, Kurukshetra, for help and precious guidance in TGA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Mahendia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadhwa, H., Kandhol, G., Deshpande, U.P. et al. Thermal stability and dielectric relaxation behavior of in situ prepared poly(vinyl alcohol) (PVA)-reduced graphene oxide (RGO) composites. Colloid Polym Sci 298, 1319–1333 (2020). https://doi.org/10.1007/s00396-020-04718-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04718-0

Keywords

Navigation