Skip to main content
Log in

An analysis on electrophoretic mobility of hydrophobic polystyrene particles with low surface charge density: effect of hydrodynamic slip

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The electrophoretic mobility of hydrophobic polystyrene particles in aqueous monovalent electrolyte solutions is analyzed using standard electrokinetic equations with a hydrodynamic boundary condition called the Navier slip condition, in which a fictitious slip length is a parameter for a slip velocity, at the particle surface. The standard electrokinetic equations underestimate the mobility of polystyrene particles bearing lower surface charge density when using the values of surface charge density from titration and a no-slip boundary condition. The introduction of the slip length of a few nanometer increases the magnitude of electrophoretic mobility and leads to the agreement between experimental mobility and theoretical mobility. The slip length increases with increasing the distance between chargeable groups on the particle surface. This result indicates the increase in hydrophobicity for the surface of polystyrene particle with the lower number of chargeable sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reuss FF (1809) Sur un Nouvel Effet de L’electricite Galvanique. Mem Soc Imp Nat Moscow 2:327–337

    Google Scholar 

  2. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley

  3. Ohshima H, Furusawa K (1998) Electrical phenomena at interfaces: fundamentals: measurements, and applications, vol 76. CRC Press

  4. Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2005) Measurement and interpretation of electrokinetic phenomena (IUPAC technical report). Pure Appl Chem 77(10):1753–1805

    Article  CAS  Google Scholar 

  5. Wall S (2010) The history of electrokinetic phenomena. Curr Opin Colloid Interface Sci 15:119–124

    Article  CAS  Google Scholar 

  6. O'Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 2(74):1607–1626

    Article  Google Scholar 

  7. Ohshima H, Healy TW, White LR (1983) Approximation analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans 2(79):1613–1628. https://doi.org/10.1039/F29837901613

    Article  Google Scholar 

  8. Ohshima H (2001) Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle. J Colloid Interface Sci 239(2):587–590

    Article  CAS  Google Scholar 

  9. Borkovec M, Behrens SH, Semmler M (2000) Observation of the mobility maximum predicted by the standard electrokinetic model for highly charged amidine latex particles. Langmuir 16(11):5209–5212

    Article  CAS  Google Scholar 

  10. Kobayashi M (2008) Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modelling. Colloid Polym Sci 286:935–940. https://doi.org/10.1007/s00396-008-1851-9

    Article  CAS  Google Scholar 

  11. Sugimoto T, Kobayash M, Adachi Y (2014) The effect of double layer repulsion on the rate of turbulent and Brownian aggregation: experimental consideration. Colloids Surf A Physicochem Eng Aspects 443:418–424. https://doi.org/10.1016/j.colsurfa.2013.12.002

    Article  CAS  Google Scholar 

  12. Chassagne C, Ibanez M (2012) Electrophoretic mobility of latex nanospheres in electrolytes: experimental challenges. Pure Appl Chem 85(1):41–51. https://doi.org/10.1351/PAC-CON-12-02-12

    Article  CAS  Google Scholar 

  13. Ohshima H (2015) Approximate analytic expression for the electrophoretic mobility of moderately charged cylindrical colloidal particles. Langmuir 31(51):13633–13638

    Article  CAS  Google Scholar 

  14. Sato Y, Kusaka Y, Kobayashi M (2017) Charging and aggregation behavior of cellulose nanofibers in aqueous solution. Langmuir 33(44):12660–12669

    Article  CAS  Google Scholar 

  15. Bakker HE, Besseling TH, Wijnhoven JE, Helfferich PH, Van Blaaderen A, Imhof A (2017) Microelectrophoresis of silica rods using confocal microscopy. Langmuir 33(4):881–890

    Article  CAS  Google Scholar 

  16. Yamaguchi A, Kobayashi M (2016) Quantitative evaluation of shift of slipping plane and counterion binding to lysozyme by electrophoresis method. Colloid Polym Sci 294(6):1019–1026

    Article  CAS  Google Scholar 

  17. Derjaguin B, Landau L (1941) The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions. Acta Physicochim URSS 14(633-52):58

    Google Scholar 

  18. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier

  19. Lin W, Galletto P, Borkovec M (2004) Charging and aggregation of latex particles by oppositely charged dendrimers. Langmuir 20(18):7465–7473. https://doi.org/10.1021/la049006i

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi M, Nitanai M, Satta N, Adachi Y (2013) Coagulation and charging of latex particles in the presence of imogolite. Colloids Surf A Physicochem Eng Aspects 435:139–146. https://doi.org/10.1016/j.colsurfa.2012.12.057

    Article  CAS  Google Scholar 

  21. Kobayashi M, Nanaumi H, Muto Y (2009) Initial deposition rate of latex particles in the packed bed of zirconia beads. Colloids Surf A Physicochem Eng Asp 347(1-3):2–7. https://doi.org/10.1016/j.colsurfa.2008.09.054.m

    Article  CAS  Google Scholar 

  22. Takeshita C, Masuda K, Kobayashi M (2019) The effect of monovalent anion species on the aggregation and charging of allophane clay nanoparticles. Colloids Surf A Physicochem Eng Asp 577:103–109

    Article  CAS  Google Scholar 

  23. Oncsik T, Trefalt G, Borkovec M, Szilagyi I (2015) Specific ion effects on particle aggregation induced by monovalent salts within the Hofmeister series. Langmuir 31(13):3799–3807

    Article  CAS  Google Scholar 

  24. Kobayashi M, Yuki S, Adachi Y (2016) Effect of anionic surfactants on the stability ratio and electrophoretic mobility of colloidal hematite particles. Colloids Surf A Physicochem Eng Asp 510:190–197

    Article  CAS  Google Scholar 

  25. Huang Y, Yamaguchi A, Pham TD, Kobayashi M (2018) Charging and aggregation behavior of silica particles in the presence of lysozymes. Colloid Polym Sci 296(1):145–155

    Article  CAS  Google Scholar 

  26. Semenov I, Raafatnia S, Sega M, Lobaskin V, Holm C, Kremer F (2013) Electrophoretic mobility and charge inversion of a colloidal particle studied by single-colloid electrophoresis and molecular dynamics simulations. Phys Rev E 87(2):022302-1–022302-7. https://doi.org/10.1103/PhysRevE.87.022302

    Article  CAS  Google Scholar 

  27. Hakim A, Nishiya M, Kobayashi M (2016) Charge reversal of sulfate latex induced by hydrophobic counterion: effects of surface charge density. Colloid Polym Sci 294(10):1671–1678. https://doi.org/10.1007/s00396-016-3931-6

    Article  CAS  Google Scholar 

  28. Sugimoto T, Nishiya M, Kobayashi M (2017) Electrophoretic mobility of carboxyl latex particles: effects of hydrophobic monovalent counter-ions. Colloid Polym Sci 295(12):2405–2411. https://doi.org/10.1007/s00396-017-4219-1

    Article  CAS  Google Scholar 

  29. Gopmandal PP, Bhattacharyya S, Ohshima H (2017) On the similarity between the electrophoresis of a liquid drop and a spherical hydrophobic particle. Colloid Polym Sci 295(10):2077–2082. https://doi.org/10.1007/s00396-017-4181-y

    Article  CAS  Google Scholar 

  30. Khair AS, Squires TM (2009) The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys Fluids 21(4):042001-1–042001-14. https://doi.org/10.1063/1.3116664

    Article  CAS  Google Scholar 

  31. Joly L, Ybert C, Trizac E, Bocquet L (2006) Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. J Chem Phys 125(20):204716

    Article  Google Scholar 

  32. Jing D, Bhushan B (2013) Quantification of surface charge density and its effect on boundary slip. Langmuir 29(23):6953–6963

    Article  CAS  Google Scholar 

  33. Ajdari A, Bocquet L (2006) Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond. Phys Rev Lett 96(18):186102

    Article  Google Scholar 

  34. Bouzigues CI, Tabeling P, Bocquet L (2008) Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys Rev Lett 101(11):114503

    Article  CAS  Google Scholar 

  35. Lauga E, Squires TM (2005) Brownian motion near a partial-slip boundary: a local probe of the no-slip condition. Phys Fluids 17(10):103102

    Article  Google Scholar 

  36. Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VS (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68(12):2859

    Article  CAS  Google Scholar 

  37. COMSOL (2018) CFD Module User’s Guide. COMSOL

  38. Peula-García JM, Ortega-Vinuesa JL, Bastos-Gonzalez D (2010) Inversion of Hofmeister series by changing the surface of colloidal particles from hydrophobic to hydrophilic. J Phys Chem C 114(25):11133–11139

    Article  Google Scholar 

  39. Schwierz N, Horinek D, Sivan U, Netz RR (2016) Reversed Hofmeister series—the rule rather than the exception. Curr Opin Colloid Interface Sci 23:10–18. https://doi.org/10.1016/j.cocis.2016.04.003

    Article  CAS  Google Scholar 

Download references

Funding

The author thanks the financial support by the JSPS KAKNEHI (16H06382 and 19H03070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyoshi Kobayashi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest associated with this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MPH 1478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, M. An analysis on electrophoretic mobility of hydrophobic polystyrene particles with low surface charge density: effect of hydrodynamic slip. Colloid Polym Sci 298, 1313–1318 (2020). https://doi.org/10.1007/s00396-020-04716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04716-2

Keywords

Navigation