Skip to main content
Log in

Copolymer-assisted Polypropylene Separator for Fast and Uniform Lithium Ion Transport in Lithium-ion Batteries

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In lithium-ion batteries (LIBs), separators play a vital role in lithium-ion (Li+) transport, and thus affect rate performance, battery life, and safety. Here, a new kind of multifunctional copolymer poly(acrylonitrile-co-lithium acrylate-co-butyl acrylate) (PAAB-Li) is synthesized through soap-free emulsion polymerization, and is used to form homogeneous-covered separator based on PP matrix by a simple dip-annealing process. Compared to the bare PP separator, the modified separators with PAAB-Li enable higher ionic conductivity, higher lithium ion transference number (increased from 0.360 to 0.525), and lower interface impedance (reduced from 155 Ω to 34 Ω). It has been indicated that PAAB-Li functional layer significantly promotes the fast transport of Li+ and improves the compatibility of the separator/electrolyte-electrode interface. The LiCoO2/graphite cells with the PAAB-Li-assisted separator demonstrate excellent cycle stability and rate performance. In addition, the Li symmetric cells with the modified separator stably cycle over 800 h, indicating the functional layer effectively suppresses the lithium dendrite growth. This facile strategy can be easily applied to LIBs requiring high safety and even be scalable to Li metal batteries. Moreover, the possible mechanism of the PAAB-Li functional layer promoting fast and uniform Li+ transport is discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson, B. A.; White, R. E. Characterization of commercially available lithiumion batteries. J. Power Sources 1998, 70, 48–54.

    CAS  Google Scholar 

  2. Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

    CAS  Google Scholar 

  3. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    CAS  PubMed  Google Scholar 

  4. Bieker, G.; Winter, M.; Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 2015, 17, 8670–8679.

    CAS  PubMed  Google Scholar 

  5. Kuo, P. L.; Wu, C. A.; Lu, C. Y.; Tsao, C. H.; Hou, C. H.; Hou, S. S. High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte. ACS Appl. Mater. Interfaces 0014, 6, 3156–3162.

    Google Scholar 

  6. Wang, F. M.; Lee, J. T.; Cheng, J. H.; Cheng, C. S.; Yang, C. R. The network gel polymer electrolyte based on poly(acrylate-co-imide) and its transport properties in lithium ion batteries. J. Solid State Electrochem. 2009, 13, 1425–1431.

    CAS  Google Scholar 

  7. Zuo, T. T.; Wu, X. W.; Yang, C. P.; Yin, Y. X.; Ye, H.; Li, N. W.; Guo, Y. G. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 2017, 29, 1700389.

    Google Scholar 

  8. Wang, Q. S.; Mao, B. B.; Stoliarov, S. I.; Sun, J. H. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energy Combust. Sci. 2019, 73, 95–131.

    Google Scholar 

  9. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. W. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886.

    CAS  Google Scholar 

  10. Zahn, R.; Lagadec, M. F.; Hess, M.; Wood, V. Improving ionic conductivity and lithium-ion transference number in lithium-ion battery separators. ACS Appl. Mater. Interfaces 2016, 8, 32637–32642.

    CAS  PubMed  Google Scholar 

  11. Lagadec, M. F.; Zahn, R.; Wood, V. Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 2019, 4, 16–25.

    CAS  Google Scholar 

  12. Lin, C. E.; Zhang, H.; Song, Y. Z.; Zhang, Y.; Yuan, J. J.; Zhu, B. K. Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J. Mater. Chem. A 2018, 6, 991.

    CAS  Google Scholar 

  13. Park, J. H.; Park, W.; Kim, J. H.; Ryoo, D.; Kim, H. S.; Jeong, Y. U.; Kim, D. W.; Lee, S. Y. Close-packed poly(methyl methacrylate) nanoparticle arrays-coated polyethylene separators for high-power lithium-ion polymer batteries. J. Power Sources 2011, 196, 7035.

    CAS  Google Scholar 

  14. Kim, D. W.; Ko, J. M.; Chun, J. H.; Kim, S. H.; Park, J. K. Electrochemical performances of lithium-ion cells prepared with polyethylene oxide-coated separators. Electrochem. Commun. 2001, 3, 535.

    CAS  Google Scholar 

  15. Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; Zhang, X. K.; Zong, L. Q.; Wang, J. Y.; Chen, L. Q.; Qin, J.; Cui, Y. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705.

    CAS  PubMed  Google Scholar 

  16. Zhang, Y.; Yuan, J. J.; Song, Y. Z.; Yin, X.; Sun, C. C.; Zhu, L. P.; Zhu, B. K. Tannic acid/polyethyleneimine-decorated polypropylene separators for Li-ion batteries and the role of the interfaces between separator and electrolyte. Electrochim. Acta 2018, 275, 25–31.

    CAS  Google Scholar 

  17. Zhang, C.; Liang, H. Q.; Pi, J. K.; Wu, G. P.; Xu, Z. K. Polypropylene separators with robust mussel-inspired coatings for high lithiumion battery performances. Chinese J. Polym. Sci. 0019, 37, 1015–1022.

    Google Scholar 

  18. Meng, Z. T.; Huang, Y. D.; Li, J.; Yang, R. N.; Wang, X. C.; Guo, Y.; Liu, Z. J.; Xi, M. R.; Su, W. Q.; Wang, L. Deposition of cross-linked dopamine and polyethylenimine on polypropylene separators via one-step soaking method for Li-S batteries. J. Electrochem. Soc. 2019, 166, A546–A550.

    CAS  Google Scholar 

  19. Gao, K.; Hu, X.; Yi, T.; Dai, C. PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochim. Acta 2006, 52, 443.

    CAS  Google Scholar 

  20. Liao, Y. H.; Zhou, D. Y.; Rao, M. M.; Li, W. S.; Cai, Z. P.; Liang, Y. Self-supported poly(methyl methacrylate-acrylonitrile-vinyl acetate)-based gel electrolyte for lithium ion battery. J. Power Sources 2009, 189, 139–144.

    CAS  Google Scholar 

  21. Zheng, T.; He, X.; Pu, W.; Wan, C.; Jiang, C. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries. Electrochim. Acta 2006, 52, 688–693.

    Google Scholar 

  22. Arora, P.; Zhang, Z. M. Battery separators. Chem. Rev. 2004, 104, 4419–4462.

    CAS  PubMed  Google Scholar 

  23. Stephan, A. M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42, 21–42.

    Google Scholar 

  24. Kim, J. Y.; Kim, S. K.; Lee, S. J.; Lee, S. Y.; Lee, H. M.; Ahn, S. Preparation of micro-porous gel polymer for lithium ion polymer battery. Electrochim. Acta 2004, 50, 363–366.

    CAS  Google Scholar 

  25. Lu, W.; Yuan, Z.; Zhao, Y.; Zhang, H.; Zhang, H.; Li, X. Porous membranes in secondary battery technologies. Chem. Soc. Rev. 2017, 46, 2199–2236.

    CAS  PubMed  Google Scholar 

  26. Tsutsumi, H.; Matsuo, A.; Takase, K.; Doi, S.; Hisanaga, A.; Onimura, K.; Oishi, T. Conductivity enhancement of polyacrylonitrile-based electrolytes by addition of cascade nitrile compounds. J. Power Sources 2000, 90, 33–38.

    CAS  Google Scholar 

  27. Liao, Y.; Rao, M.; Li, W.; Tan, C.; Yi, J.; Chen, L. Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries. Electrochim. Acta 2009, 54, 6396–6402.

    CAS  Google Scholar 

  28. Luo, S.; Liu, Z.; Liu, B.; Liu, Q. Preparation of semi-IPN(BA-VAc-VAE) by emulsion polymerization and its properties investigation. Bull. Mat. Sci. 2011, 34, 1531–1536.

    CAS  Google Scholar 

  29. Choi, Y. S. Poly(n -butyl acrylate-co-methyl methacrylate) and poly(n-butyl acrylate-co-styrene) silicate nanocomposites prepared by emulsion polymerization. Macromol. Res. 2003, 11, 425–430.

    CAS  Google Scholar 

  30. Pieczonka, N. P. W.; Borgel, V.; Ziv, B.; Leifer, N.; Dargel, V.; Aurbach, D.; Kim, J. H.; Liu, Z. Y.; Huang, X. S.; Krachkovskiy, S. A.; Goward, G. R.; Halalay, I.; Powell, B. R.; Manthiram, A. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage li-ion batteries. Adv. Energy Mater. 2015, 51501008, 1501008.

    Google Scholar 

  31. Zuo, T. T.; Wu, X. W.; Yang, C. P.; Yin, Y. X.; Ye, H.; Li, N. W.; Guo, Y. G. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 2017, 29.

  32. Fan, L.; Zhuang, H. L.; Gao, L.; Lu, Y.; Archer, L. A. Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A 2017, 5, 3483–3492.

    CAS  Google Scholar 

  33. Xu, K. Toward reliable values of electrochemical stability limits for electrolytes. Chem. Rev. 2004, 104, 4303.

    CAS  PubMed  Google Scholar 

  34. Xu, K.; Ding, S. P.; Jow, T. R. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. J. Electrochem. Soc. 1999, 146, 4172.

    CAS  Google Scholar 

  35. Zhang, H.; Lin, C. E.; Zhou, M. Y.; John, A. E.; Zhu, B. K. High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries. Electrochim. Acta 2016, 187, 125–133.

    CAS  Google Scholar 

  36. Zhang, H.; Zhang, Y.; Yao, Z.; John, A. E.; Li, Y.; Li, W.; Zhu, B. Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries. Electrochim. Acta 2016, 204, 176–182.

    CAS  Google Scholar 

  37. Song, Y. Z.; Yuan, J. J.; Yin, X.; Zhang, Y.; Lin, C. E.; Sun, C. C.; Fang, L. F.; Zhu, B.; Zhu, L. P. Effect of polyphenol-polyamine treated polyethylene separator on the ionic conduction and interface properties for lithium-metal anode batteries. J. Electroanal. Chem. 2018, 816, 68–74.

    CAS  Google Scholar 

  38. Sun, X. G.; Kerr, J. B. Synthesis and characterization of network single ion conductors (NSIC) based on comb-branched polyepoxide ethers and lithium bis(allylmalonato)borate. Macromolecules 2006, 39, 362–372.

    CAS  Google Scholar 

  39. Doyle, M.; Fuller, T. F.; Newman, J. Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell. J. Electrochem. Soc. 1993, 140, 1526–1533.

    CAS  Google Scholar 

  40. Xiang, Y.; Li, J.; Lei, J.; Liu, D.; Xie, Z.; Qu, D.; Li, K.; Deng, T.; Tang, H. Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress. ChemSusChem 2016, 9, 3023–3039.

    CAS  PubMed  Google Scholar 

  41. Zhang, Y.; Song, Y. Z.; Yuan, J. J.; Yin, X.; Sun, C. C.; Zhu, B. K. Polypropylene separator coated with a thin layer of poly(lithium acrylate-co-butyl acrylate) for high-performance lithium-ion batteries. J. Appl. Polym. Sci. 2018, 135.

  42. Wang, Z. Y.; Guo, F. L.; Chen, C.; Shi, L. Y.; Yuan, S.; Sun, L. N.; Zhu, J. F. Self-assembly of PEI/SiO2 on polyethylene separators for Liion batteries with enhanced rate capability. ACS Appl. Mater. Interfaces 2015, 7, 3314–3322.

    CAS  PubMed  Google Scholar 

  43. Doyle, R. P.; Chen, X.; Macrae, M.; Srungavarapu, A.; Smith, L. J.; Gopinadhan, M.; Osuji, C. O.; Granados-Focil, S. Poly(ethylenimine)-based polymer blends as single-ion lithium conductors. Macromolecules 2014, 47, 3401–3408.

    CAS  Google Scholar 

  44. Huo, H. Y.; Wu, B.; Zhang, T.; Zheng, X. S.; Ge, L.; Xu, T. W.; Guo, X. X.; Sun, X. L. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solidstate batteries. Energy Storage Mater. 2019, 18, 59–67.

    Google Scholar 

  45. Li, Q.; Zhu, S.; Lu, Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 11606422.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National 863 Program of China (No. 2012AA03A602), National Key R&D Program of China (No. 2017YFE0114100), Science and Technology Project of Guangdong Province of China (No. 2019 ST115), and the National Natural Science Foundation of China (No. 21805240).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao-Ku Zhu or You-Zhi Song.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Kong, QR., Sun, CC. et al. Copolymer-assisted Polypropylene Separator for Fast and Uniform Lithium Ion Transport in Lithium-ion Batteries. Chin J Polym Sci 38, 1313–1324 (2020). https://doi.org/10.1007/s10118-020-2455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2455-1

Keywords

Navigation