Skip to main content
Log in

A Non-local Cross-Diffusion Model of Population Dynamics I: Emergent Spatial and Spatiotemporal Patterns

  • Original Paper
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We extend a spatially non-local cross-diffusion model of aggregation between multiple species with directed motion toward resource gradients to include many species and more general kinds of dispersal. We first consider diffusive instabilities, determining that for directed motion along fecundity gradients, the model permits the Turing instability leading to colony formation and persistence provided there are three or more interacting species. We also prove that such patterning is not possible in the model under the Turing mechanism for two species under directed motion along fecundity gradients, confirming earlier findings in the literature. However, when the directed motion is not along fecundity gradients, for instance, if foraging or migration is sub-optimal relative to fecundity gradients, we find that very different colony structures can emerge. This generalization also permits colony formation for two interacting species. In the advection-dominated case, aggregation patterns are more broad and global in nature, due to the inherent non-local nature of the advection which permits directed motion over greater distances, whereas in the diffusion-dominated case, more highly localized patterns and colonies develop, owing to the localized nature of random diffusion. We also consider the interplay between Turing patterning and spatial heterogeneity in resources. We find that for small spatial variations, there will be a combination of Turing patterns and patterning due to spatial forcing from the resources, whereas for large resource variations, spatial or spatiotemporal patterning can be modified greatly from what is predicted on homogeneous domains. For each of these emergent behaviors, we outline the theoretical mechanism leading to colony formation and then provide numerical simulations to illustrate the results. We also discuss implications this model has for studies of directed motion in different ecological settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrams PA (2007) Habitat choice in predator-prey systems: spatial instability due to interacting adaptive movements. Am Nat 169(5):581–594

    Google Scholar 

  • Abrams PA, Cressman R, Křivan V (2007) The role of behavioral dynamics in determining the patch distributions of interacting species. Am Nat 169(4):505–518

    Google Scholar 

  • Ackland GJ, Gallagher ID (2004) Stabilization of large generalized Lotka-Volterra foodwebs by evolutionary feedback. Phys Rev Lett 93(15):158701

    Google Scholar 

  • Albrecht M, Gotelli N (2001) Spatial and temporal niche partitioning in grassland ants. Oecologia 126(1):134–141

    Google Scholar 

  • Ali SW, Cosner C (1995) Models for the effects of individual size and spatial scale on competition between species in heterogeneous environments. Math Biosci 127(1):45–76

    MATH  Google Scholar 

  • Allen AM, Singh NJ (2016) Linking movement ecology with wildlife management and conservation. Front Ecol Evolut 3:155

    Google Scholar 

  • Alonso D, Bartumeus F, Catalan J (2002) Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83(1):28–34

    Google Scholar 

  • Amarasekare P (2007) Spatial dynamics of communities with intraguild predation: the role of dispersal strategies. Am Nat 170(6):819–831

    Google Scholar 

  • Andresén P, Bache M, Mosekilde E, Dewel G, Borckmanns P (1999) Stationary space-periodic structures with equal diffusion coefficients. Phys Rev E 60(1):297

    Google Scholar 

  • Armsworth PR, Roughgarden JE (2005a) Disturbance induces the contrasting evolution of reinforcement and dispersiveness is directed and random movers. Evolution 59(10):2083–2096

    Google Scholar 

  • Armsworth PR, Roughgarden JE (2005b) The impact of directed versus random movement on population dynamics and biodiversity patterns. Am Nat 165(4):449–465

    Google Scholar 

  • Armsworth PR, Roughgarden JE (2008) The structure of clines with fitness-dependent dispersal. Am Nat 172(5):648–657

    Google Scholar 

  • Bassett A, Krause AL, Van Gorder RA (2017) Continuous dispersal in a model of predator-prey-subsidy population dynamics. Ecol Model 354:115–122

    Google Scholar 

  • Baurmann M, Gross T, Feudel U (2007) Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. J Theor Biol 245(2):220–229

    MathSciNet  Google Scholar 

  • Bennett JJ, Sherratt JA (2019) How do dispersal rates affect the transition from periodic to irregular spatio-temporal oscillations in invasive predator-prey systems? Appl Math Lett 94:80–86

    MathSciNet  MATH  Google Scholar 

  • Benson DL, Sherratt JA, Maini PK (1993) Diffusion driven instability in an inhomogeneous domain. Bull Math Biol 55(2):365–384

    MATH  Google Scholar 

  • Bernasconi G, Boissonade J (1997) Phyllotactic order induced by symmetry breaking in advected turing patterns. Phys Lett A 232(3–4):224–230

    MathSciNet  MATH  Google Scholar 

  • Bertsch M, Gurtin ME, Hilhorst D, Peletier L (1985) On interacting populations that disperse to avoid crowding: preservation of segregation. J Math Biol 23(1):1–13

    MathSciNet  MATH  Google Scholar 

  • Bolnick DI, Otto SP (2013) The magnitude of local adaptation under genotype-dependent dispersal. Ecol Evolut 3(14):4722–4735

    Google Scholar 

  • Burger M, Di Francesco M, Pietschmann JF, Schlake B (2010) Nonlinear cross-diffusion with size exclusion. SIAM J Math Anal 42(6):2842–2871

    MathSciNet  MATH  Google Scholar 

  • Cantrell RS, Cosner C, Lou Y, Xie C (2013) Random dispersal versus fitness-dependent dispersal. J Differ Equ 254(7):2905–2941

    MathSciNet  MATH  Google Scholar 

  • Chen W, Peng R (2004) Stationary patterns created by cross-diffusion for the competitor–competitor–mutualist model. J Math Anal Appl 291(2):550–564

    MathSciNet  MATH  Google Scholar 

  • Chen X, Hambrock R, Lou Y (2008) Evolution of conditional dispersal: a reaction–diffusion–advection model. J Math Biol 57(3):361–386

    MathSciNet  MATH  Google Scholar 

  • Cobbold CA, Lutscher F, Sherratt JA (2015) Diffusion-driven instabilities and emerging spatial patterns in patchy landscapes. Ecol Complex 24:69–81

    Google Scholar 

  • Dawson SP, Lawniczak A, Kapral R (1994) Interaction of Turing and flow-induced chemical instabilities. J Chem Phys 100(7):5211–5218

    Google Scholar 

  • Dillon R, Maini P, Othmer H (1994) Pattern formation in generalized Turing systems. J Math Biol 32(4):345–393

    MathSciNet  MATH  Google Scholar 

  • Dubey B, Das B, Hussain J (2001) A predator-prey interaction model with self and cross-diffusion. Ecol Model 141(1–3):67–76

    Google Scholar 

  • Fasani S, Rinaldi S (2011) Factors promoting or inhibiting Turing instability in spatially extended prey-predator systems. Ecol Model 222(18):3449–3452

    Google Scholar 

  • Ferreira JD, da Silva SH, Rao VSH (2019) Stability analysis of predator-prey models involving cross-diffusion. Phys D Nonlinear Phenomena (in Press)

  • Fitzsimons MS, Miller RM, Jastrow JD (2008) Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158(1):117–127

    Google Scholar 

  • Fontbona J, Méléard S (2015) Non local Lotka–Volterra system with cross-diffusion in an heterogeneous medium. J Math Biol 70(4):829–854

    MathSciNet  MATH  Google Scholar 

  • Galiano G (2011) Modeling spatial adaptation of populations by a time non-local convection cross-diffusion evolution problem. Appl Math Comput 218(8):4587–4594

    MathSciNet  MATH  Google Scholar 

  • Gambino G, Lombardo M, Sammartino M (2008) Cross-diffusion driven instability for a Lotka-Volterra competitive reaction–diffusion system. In: Waves and stability in continuous media, World Scientific, pp 297–302

  • Gambino G, Lombardo M, Sammartino M (2013) Pattern formation driven by cross-diffusion in a 2d domain. Nonlinear Anal Real World Appl 14(3):1755–1779

    MathSciNet  MATH  Google Scholar 

  • Garvie MR, Golinski M (2010) Metapopulation dynamics for spatially extended predator-prey interactions. Ecol Complex 7(1):55–59

    Google Scholar 

  • Grindrod P (1988) Models of individual aggregation or clustering in single and multi-species communities. J Math Biol 26(6):651–660

    MathSciNet  MATH  Google Scholar 

  • Grindrod P (1991) Patterns and waves: the theory and applications of reaction–diffusion equations. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Gurtin ME, MacCamy RC (1977) On the diffusion of biological populations. Math Biosci 33(1–2):35–49

    MathSciNet  MATH  Google Scholar 

  • Hadany L, Eshel I, Motro U (2004) No place like home: competition, dispersal and complex adaptation. J Evolut Biol 17(6):1328–1336

    Google Scholar 

  • Hagman M, Phillips BL, Shine R (2008) Tails of enticement: caudal luring by an ambush-foraging snake (Acanthophis praelongus, Elapidae). Funct Ecol:1134–1139

  • Hambrock R, Lou Y (2009) The evolution of conditional dispersal strategies in spatially heterogeneous habitats. Bull Math Biol 71(8):1793

    MathSciNet  MATH  Google Scholar 

  • Hastings A, Petrovskii S, Morozov A (2011) Spatial ecology across scales. Biol Lett 7(2):163

    Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178(1):41–61

    Google Scholar 

  • Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2):183

    MathSciNet  MATH  Google Scholar 

  • Holden C (2006) Inching toward movement ecology. Science 313(5788):779–782

    Google Scholar 

  • Jansen JE, Van Gorder RA (2018) Dynamics from a predator-prey-quarry-resource-scavenger model. Theor Ecol 11(1):19–38

    Google Scholar 

  • Kareiva P, Odell G (1987) Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Am Nat 130(2):233–270

    Google Scholar 

  • Kishimoto K (1982) The diffusive Lotka–Volterra system with three species can have a stable non-constant equilibrium solution. J Math Biol 16(1):103–112

    MathSciNet  MATH  Google Scholar 

  • Kishimoto K, Weinberger HF (1985) The spatial homogeneity of stable equilibria of some reaction–diffusion systems on convex domains. J Differ Equ 58(1):15–21

    MathSciNet  MATH  Google Scholar 

  • Kishimoto K, Mimura M, Yoshida K (1983) Stable spatio-temporal oscillations of diffusive Lotka–Volterra system with three or more species. J Math Biol 18(3):213–221

    MathSciNet  MATH  Google Scholar 

  • Kondo S, Miura T (2010) Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329(5999):1616–1620

    MathSciNet  MATH  Google Scholar 

  • Kondratyev S, Monsaingeon L, Vorotnikov D (2016) A fitness-driven cross-diffusion system from population dynamics as a gradient flow. J Differ Equ 261(5):2784–2808

    MathSciNet  MATH  Google Scholar 

  • Krause AL, Burton AM, Fadai NT, Van Gorder RA (2018a) Emergent structures in reaction–advection–diffusion systems on a sphere. Phys Rev E 97(4):042215

    MathSciNet  Google Scholar 

  • Krause AL, Klika V, Woolley TE, Gaffney EA (2018b) Heterogeneity induces spatiotemporal oscillations in reaction–diffusion systems. Phys Rev E 97(5):052206

    MathSciNet  Google Scholar 

  • Krause AL, Klika V, Woolley TE, Gaffney EA (2020) From one pattern into another: analysis of turing patterns in heterogeneous domains via WKBJ. J R Soc Interface (in Press)

  • Krause AL, Van Gorder RA (2020) A non-local cross-diffusion model of population dynamics II: Exact, approximate, and numerical traveling waves

  • Kurowski L, Krause AL, Mizuguchi H, Grindrod P, Van Gorder RA (2017) Two-species migration and clustering in two-dimensional domains. Bull Math Biol 79(10):2302–2333

    MathSciNet  MATH  Google Scholar 

  • Kuznetsov YA, Antonovsky MY, Biktashev V, Aponina E (1994) A cross-diffusion model of forest boundary dynamics. J Math Biol 32(3):219–232

    MathSciNet  MATH  Google Scholar 

  • Laundré JW, Lucina H, William JR (2010) The landscape of fear: ecological implications of being afraid. Open Ecol J 3:1–7

    Google Scholar 

  • Lee JM, Hillen T, Lewis MA (2009) Pattern formation in prey-taxis systems. J Biol Dyn 3(6):551–573

    MathSciNet  MATH  Google Scholar 

  • Lewis MA, Murray JD (1993) Modelling territoriality and wolf-deer interactions. Nature 366(6457):738

    Google Scholar 

  • Lewis MA, Maini PK, Petrovskii SV (2013). Dispersal, individual movement and spatial ecology. Lecture Notes in Mathematics (Mathematics Bioscience Series) 2071

  • Lorenzetti F, Arnason J, Philogene B, Hamilton R (1997) Evidence for spatial niche partitioning in predaceous aphidophaga: use of plant colour as a cue. Entomophaga 42(1–2):49

    Google Scholar 

  • Lou Y, Ni WM (1996a) Diffusion, self-diffusion and cross-diffusion. J Differ Equ 131(1):79–131

    MathSciNet  MATH  Google Scholar 

  • Lou Y, Ni WM (1996b) Diffusion, self-diffusion and cross-diffusion. J Differ Equ 131(1):79–131

    MathSciNet  MATH  Google Scholar 

  • Lou Y, Ni WM, Yotsutani S (2015) Pattern formation in a cross-diffusion system. Discrete Contin Dyn Syst 35(4):1589–1607

    MathSciNet  MATH  Google Scholar 

  • Lutscher F (2019) Integrodifference equations in spatial ecology. Springer, Cham

    MATH  Google Scholar 

  • Lv Y, Yuan R, Pei Y (2013) Turing pattern formation in a three species model with generalist predator and cross-diffusion. Nonlinear Anal Theory Methods Appl 85:214–232

    MathSciNet  MATH  Google Scholar 

  • Lyson TR, Longrich NR (2010) Spatial niche partitioning in dinosaurs from the latest cretaceous (maastrichtian) of North America. Proc R Soc B Biol Sci 278(1709):1158–1164

    Google Scholar 

  • Ma ZP, Li WT, Wang YX (2017) Spatiotemporal patterns induced by cross-diffusion in a three-species food chain model. Int J Bifurc Chaos 27(01):1750011

    MathSciNet  MATH  Google Scholar 

  • Madin EM, Madin JS, Booth DJ (2011) Landscape of fear visible from space. Sci Rep 1:14

    Google Scholar 

  • Malchow H, Petrovskii SV, Venturino E (2007) Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulation. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Matano H, Mimura M (1983) Pattern formation in competition-diffusion systems in nonconvex domains. Publ Res Inst Math Sci 19(3):1049–1079

    MathSciNet  MATH  Google Scholar 

  • Míguez DG, Satnoianu RA, Muñuzuri AP (2006) Experimental steady pattern formation in reaction–diffusion–advection systems. Phys Rev E 73(2):025201

    Google Scholar 

  • Mitchell MS, Powell RA (2004) A mechanistic home range model for optimal use of spatially distributed resources. Ecol Model 177(1–2):209–232

    Google Scholar 

  • Moorcroft PR, Lewis MA, Crabtree RL (1999) Home range analysis using a mechanistic home range model. Ecology 80(5):1656–1665

    Google Scholar 

  • Morozov A, Petrovskii S, Li BL (2006) Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. J Theor Biol 238(1):18–35

    MathSciNet  Google Scholar 

  • Mukherjee N, Ghorai S, Banerjee M (2019) Cross-diffusion induced Turing and non-Turing patterns in Rosenzweig–MacArthur model. Lett Biomath. https://doi.org/10.1080/23737867.2019.1585981

    Article  Google Scholar 

  • Murray JD (2003) Mathematical biology II: spatial models and biomedical applications. Springer, New York

    MATH  Google Scholar 

  • Murrell DJ, Law R (2003) Heteromyopia and the spatial coexistence of similar competitors. Ecol Lett 6(1):48–59

    Google Scholar 

  • Nakagaki T, Yamada H, Ito M (1999) Reaction–diffusion–advection model for pattern formation of rhythmic contraction in a giant amoeboid cell of the Physarum Plasmodium. J Theor Biol 197(4):497–506

    Google Scholar 

  • Nasreddine E (2012) Well-posedness for a model of individual clustering. Discrete Contin Dyn Syst Ser B 18(10):2647–2668

    MathSciNet  MATH  Google Scholar 

  • Nasreddine E (2014) Two-dimensional individual clustering model. Discrete Contin Dyn Syst S 7(2):307–316

    MathSciNet  MATH  Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evolut 15(7):278–285

    Google Scholar 

  • Nathan R (2008) An emerging movement ecology paradigm. Proc Natl Acad Sci 105(49):19050–19051

    Google Scholar 

  • Novak M, Yeakel JD, Noble AE, Doak DF, Emmerson M, Estes JA, Jacob U, Tinker M, Wootton JT (2016) Characterizing species interactions to understand press perturbations: What is the community matrix? Annu Rev Ecol Evolut Syst 47:409–432

    Google Scholar 

  • Nugent C, Quarles W, Solomon T (2004) Experimental studies of pattern formation in a reaction–advection–diffusion system. Phys Rev Lett 93(21):218301

    Google Scholar 

  • Orr HA (2009) Fitness and its role in evolutionary genetics. Nat Rev Gen 10(8):531

    Google Scholar 

  • Padrón V (1998) Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations. Commun Par Differ Equ 23(3–4):457–486

    MathSciNet  MATH  Google Scholar 

  • Padrón V (2004) Effect of aggregation on population recovery modeled by a forward–backward pseudoparabolic equation. Trans Am Math Soc:2739–2756

  • Page K, Maini PK, Monk NA (2003) Pattern formation in spatially heterogeneous Turing reaction–diffusion models. Phys D Nonlinear Phenom 181(1–2):80–101

    MathSciNet  MATH  Google Scholar 

  • Page KM, Maini PK, Monk NA (2005) Complex pattern formation in reaction–diffusion systems with spatially varying parameters. Phys D Nonlinear Phenom 202(1–2):95–115

    MathSciNet  MATH  Google Scholar 

  • Peng R, Wang M, Yang G (2008) Stationary patterns of the Holling–Tanner prey-predator model with diffusion and cross-diffusion. Appl Math Comput 196(2):570–577

    MathSciNet  MATH  Google Scholar 

  • Petrovskii SV, Morozov AY, Venturino E (2002) Allee effect makes possible patchy invasion in a predator-prey system. Ecol Lett 5(3):345–352

    Google Scholar 

  • Potts JR, Lewis MA (2014) How do animal territories form and change? Lessons from 20 years of mechanistic modelling. Proc R Soc B Biol Sci 281(1784):20140231

    Google Scholar 

  • Potts JR, Lewis MA (2019) Spatial memory and taxis-driven pattern formation in model ecosystems. Bull Math Biol 81:2725–2747

    MathSciNet  MATH  Google Scholar 

  • Quillfeldt P, Masello JF, Navarro J, Phillips RA (2013) Year-round distribution suggests spatial segregation of two small petrel species in the South Atlantic. J Biogeogr 40(3):430–441

    Google Scholar 

  • Riaz SS, Kar S, Ray DS (2005) Differential flow induced transition of Hopf instability to Turing instability and pattern formation. Phys D Nonlinear Phenom 203(3–4):224–232

    MathSciNet  MATH  Google Scholar 

  • Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evolut 29(3):165–176

    Google Scholar 

  • Rovinsky AB, Menzinger M (1992) Chemical instability induced by a differential flow. Phys Rev Lett 69(8):1193

    Google Scholar 

  • Rowell JT (2009) The limitation of species range: a consequence of searching along resource gradients. Theor Popul Biol 75(2–3):216–227

    MATH  Google Scholar 

  • Ruxton GD, Rohani P (1999) Fitness-dependent dispersal in metapopulations and its consequences for persistence and synchrony. J Anim Ecol 68(3):530–539

    Google Scholar 

  • Satnoianu RA, Menzinger M, Maini PK (2000) Turing instabilities in general systems. J Math Biol 41(6):493–512

    MathSciNet  MATH  Google Scholar 

  • Schuette P, Wagner AP, Wagner ME, Creel S (2013) Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biol Conserv 158:301–312

    Google Scholar 

  • Shepard EL, Wilson RP, Rees WG, Grundy E, Lambertucci SA, Vosper SB (2013) Energy landscapes shape animal movement ecology. Am Nat 182(3):298–312

    Google Scholar 

  • Sherratt JA (2011) Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments II: patterns with the largest possible propagation speeds. Proc R Soc A Math Phys Eng Sci 467(2135):3272–3294

    MathSciNet  MATH  Google Scholar 

  • Sherratt JA, Eagan BT, Lewis MA (1997) Oscillations and chaos behind predator-prey invasion: Mathematical artifact or ecological reality? Philos Trans R Soc Lond Ser B Biol Sci 352(1349):21–38

    Google Scholar 

  • Shigesada N, Kawasaki K, Teramoto E (1979) Spatial segregation of interacting species. J Theor Biol 79(1):83–99

    MathSciNet  Google Scholar 

  • Strobl MAR, Krause AL, Damaghi M, Gillies R, Anderson ARA, Maini PK (2019) Mix & Match: phenotypic coexistence as a key facilitator of solid tumour invasion. Bull Math Biol (in Press)

  • Taylor P, Crewe T, Mackenzie S, Lepage D, Aubry Y, Crysler Z, Finney G, Francis C, Guglielmo C, Hamilton D, Holberton R (2017) The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement. Avian Conserv Ecol 12(1):8

    Google Scholar 

  • Tian C, Ling Z, Lin Z (2011) Turing pattern formation in a predator-prey-mutualist system. Nonlinear Anal Real World Appl 12(6):3224–3237

    MathSciNet  MATH  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237(641):37–72

    MathSciNet  MATH  Google Scholar 

  • Wang W, Lin Y, Zhang L, Rao F, Tan Y (2011) Complex patterns in a predator-prey model with self and cross-diffusion. Commun Nonlinear Sci Numer Simul 16(4):2006–2015

    MathSciNet  MATH  Google Scholar 

  • Wen Z, Fu S (2016) Turing instability for a competitor–competitor–mutualist model with nonlinear cross-diffusion effects. Chaos Solitons Fractals 91:379–385

    MathSciNet  MATH  Google Scholar 

  • Winder M (2009) Photosynthetic picoplankton dynamics in Lake Tahoe: temporal and spatial niche partitioning among prokaryotic and eukaryotic cells. J Plankton Res 31(11):1307–1320

    Google Scholar 

  • Zhao Q, Van den Brink PJ, Carpentier C, Wang YX, Rodríguez-Sánchez P, Xu C, Vollbrecht S, Gillissen F, Vollebregt M, Wang S, De Laender F (2019) Horizontal and vertical diversity jointly shape food web stability against small and large perturbations. Ecol Lett 22(7):1152–1162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Van Gorder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, N.P., Kim, H., Krause, A.L. et al. A Non-local Cross-Diffusion Model of Population Dynamics I: Emergent Spatial and Spatiotemporal Patterns. Bull Math Biol 82, 112 (2020). https://doi.org/10.1007/s11538-020-00786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00786-z

Keywords

Navigation