Skip to main content
Log in

Rapid and Complete Biodegradation of Acrylic Acid by a Novel Strain Rhodococcus ruber JJ-3: Kinetics, Carbon Balance, and Degradation Pathways

  • Research Paper
  • Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Acrylic acid is used in various industrial applications but inflicts harm to human health and causes environmental pollution. A new bacterium, identified as Rhodococcus ruber JJ-3, was isolated, which can degrade high concentrations of acrylic acid rapidly and completely. Experimental results showed that the strain can achieve complete degradation of 1000 mg·L−1 acrylic acid in 11 h under the following conditions: pH 7, temperature 35°C, and inoculation quantity 15%. A high concentration of acrylic acid (2000 mg·L−1) can be completely removed in 28 h. According to the Monod model, the maximum specific degradation rate (vmax) and half saturation rate constant (KS) of the strain were 0.85 h−1 and 101.83 mg·L−1, respectively. The results of carbon balance revealed that 54.6% carbon was assimilated by R. ruber JJ-3 as biomass, and 43.0% carbon was mineralized into CO2. Furthermore, glycerol and lactic acid were measured as intermediates, and the possible degradation pathway was proposed during the biodegradation of acrylic acid. These results suggested that R. ruber JJ-3 completely degrades acrylic acid and might have a potential environmental implication in the purification of acrylic acid-contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C 0 :

Initial concentration of acrylic acid (unit: mg·L−1)

C t :

Final concentration of acrylic acid (unit: mg·L−1)

E :

Degradation efficiency (%)

K S :

Half saturation rate constant (unit: mg·L−1)

S :

The concentration of acrylic acid (unit: mg·L−1)

v :

Specific degradation rate (unit: h−1)

v max :

Maximum specific degradation rate (unit: h−1)

References

  1. Tsukamoto, J., S. Heabel, G. P. Valença, M. G. Peter, and T. T. Franco (2008) Enzymatic direct synthesis of acrylic acid esters of mono- and disaccharides. J. Chem. Technol. Biotechnol. 83: 1486–1492.

    CAS  Google Scholar 

  2. Xu, X., J. Lin, and P. Cen (2006) Advances in the research and development of acrylic acid production from biomass. Chin. J. Chem. Eng. 14: 419–427.

    CAS  Google Scholar 

  3. List of carcinogens of the World Health Organization International Agency for Research on Cancer. http://www.nmpa.gov.cn/WS04/CL2068/329742.html.

  4. Ahmad, M. A. A., M. R. Kamaruzzaman, and S. Y. Chin (2014) New method for acrylic acid recovery from industrial waste water via esterification with 2-ethyl hexanol. Process Saf. Environ. Prot. 92: 522–531.

    CAS  Google Scholar 

  5. Zhang, Y., H. Teng, and X. Gu (2012) Research progress in the treatment of wastewater containing acrylic acid and acrylic ester. Ind. Water Treat. 32: 17–20.

    Google Scholar 

  6. Papaefthimiou, P., T. Ioannides, and X. E. Verykios (1998) Catalytic incineration of volatile organic compounds Present in industrial waste streams. Appl. Therm. Eng. 18: 1005–1012.

    CAS  Google Scholar 

  7. Miao, X. and J. Wang (2018) Synthesis and characterization of Ru/LaxCe1−xOδ catalysts for wet oxidation of waste water from acrylic acid production plant. Shanxi Da Xue Xue Bao Zi Ran Ke Xue Ba. 2018: 801–807.

    Google Scholar 

  8. Bermejo, M. D. and M. J. Cocero (2006) Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor. J. Hazard. Mater. 137: 965–971.

    CAS  PubMed  Google Scholar 

  9. Gong, Y. M., S. Z. Wang, X. Y. Tang, D. H. Xu, and H. H. Ma (2014) Supercritical water oxidation of acrylic acid production wastewater. Environ. Technol. 35: 907–916.

    CAS  Google Scholar 

  10. Ghafoori, S., M. Mehrvar, and P. K. Chan (2013) Photoassisted Fenton-like degradation of aqueous poly(acrylic acid): From mechanistic kinetic model to CFD modeling. Chem. Eng. Res. Des. 91: 2617–2629.

    CAS  Google Scholar 

  11. Ayranci, E. and O. Duman (2006) Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification. J. Hazard. Mater. 136: 542–552.

    CAS  PubMed  Google Scholar 

  12. Zhao, G., J. Gao, W. Shi, M. Liu, and D. Li (2009) Electrochemical incineration of high concentration azo dye wastewater on the in situ activated platinum electrode with sustained microwave radiation. Chemosphere. 77: 188–193.

    CAS  PubMed  Google Scholar 

  13. Allison, M., K. Singh, J. Webb, and S. Grant (2011) Treatment of acrylic acid production wastewater using a submerged anaerobic membrane bioreactor. Proc. Water Environ. Feder. 2011: 6554–6564.

    Google Scholar 

  14. Kumar, A., B. Prasad, and I. M. Mishra (2008) Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box-Behnken design. J. Hazard. Mater. 150: 174–182.

    CAS  PubMed  Google Scholar 

  15. Hassan, A. A. and G. A. Sorial (2010) A comparative study for destruction of n-hexane in Trickle Bed Air Biofilters. Chem. Eng. J. 162: 227–233.

    Google Scholar 

  16. Li, A., N. Dong, M. He, and T. Pan (2015) Evaluation of performance in a combined UASB and aerobic contact oxidation process treating acrylic wastewater. Environ. Technol. 36: 807–814.

    CAS  PubMed  Google Scholar 

  17. Guan, Y., X. Gu, and T. Lei (2017) The study of bioaugmentation technology in treating high concentration acrylic acid wastewater. Mod. Chem. Res. 2017: 63–65.

    Google Scholar 

  18. Staples, C. A., S. R. Murphy, J. E. McLaughlin, H. W. Leung, T. C. Cascieri, and C. H. Farr (2000) Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters. Chemosphere. 40: 29–38.

    CAS  PubMed  Google Scholar 

  19. Takamizawa, K., H. Horitsu, T. Ichikawa, K. Kawai, and T. Suzuki (1993) β-hydroxypropionic acid production by Byssochlamys sp. grown on acrylic acid. Appl. Microbiol. Biotechnol. 40: 196–200.

    CAS  Google Scholar 

  20. Wang, C. C. and C. M. Lee (2006) Acrylic acid removal by acrylic acid utilizing bacteria from acrylonitrile-butadienestyrene resin manufactured wastewater treatment system. Water Sci. Technol. 53: 181–186.

    CAS  PubMed  Google Scholar 

  21. Wang, C. C., C. M. Lee, and A. S. Wu (2009) Acrylic acid removal from synthetic wastewater and industrial wastewater using Ralstonia solanacearum and Acidovorax avenae isolated from a wastewater treatment system manufactured with polyacrylonitrile fiber. Water Sci.Technol. 60: 3011–3016.

    CAS  PubMed  Google Scholar 

  22. Guo, Y. P., F. Tang, X. Qian, E. Du, and T. Chu (2016) Research on isolation, identification and degradation of acrylic acid wastewater-degrading bacterium. Jiangsu Gongye Xueyuan Xuebao. 2016: 73–77.

    Google Scholar 

  23. Maksimova, Y. G., D. M. Vasil’ev, A. S. Zorina, G. V. Ovechkina, and A. Y. Maksimov (2018) Acrylamide and acrylic acid biodegradation by Alcaligenes faecalis 2 planktonic cells and biofilms. Appl. Biochem. Microbiol. 54: 173–178.

    CAS  Google Scholar 

  24. Janssen, P. H. (1991) Isolation of clostridium propionicum strain 19acry3 and further characteristics of the species. Arch. Microbiol. 155: 566–571.

    CAS  PubMed  Google Scholar 

  25. Carvajal, A., I. Akmirza, D. Navia, R. Perez, R. Munoz, and R. Lebrero (2018) Anoxic denitrification of BTEX: Biodegradation kinetics and pollutant interactions. J. Environ. Manage. 214: 125–136.

    CAS  PubMed  Google Scholar 

  26. Xue, J., Y. Wu, K. Shi, X. Xiao, Y. Gao, L. Li, and Y. Qiao (2019) Study on the degradation performance and kinetics of immobilized cells in straw-alginate beads in marine environment. Bioresour. Technol. 280: 88–94.

    CAS  PubMed  Google Scholar 

  27. Bedade, D. K. and R. S. Singhal (2018) Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus ICTDB921: Identification and characterization of the acrylamidase produced. Bioresour. Technol. 261: 122–132.

    CAS  PubMed  Google Scholar 

  28. Moser, D. P., J. R. Brozowski, and K. H. Nealson (1996) Elemental analysis for biomass determination in the presence of insoluble substrates. J. Microbiol. Methods. 26: 271–278.

    CAS  Google Scholar 

  29. Lu, X. M., F. W. Xie, H. Liu, J. J. Li, L. B. Qu, and H. M. Liu (2006) Analysis of volatile and semi-volatile organic acids in TPM of mainstream cigarette smoke. Tobacco Sci. Technol. 2006: 24–29.

    Google Scholar 

  30. Zhao, L., C. Zhang, M. Bao, and J. Lu (2018) Effects of different electron acceptors on the methanogenesis of hydrolyzed polyacrylamide biodegradation in anaerobic activated sludge systems. Bioresour. Technol. 247: 759–768.

    CAS  PubMed  Google Scholar 

  31. Wang, H., J. Hu, K. Xu, X. Tang, X. Xu, and C. Shen (2018) Biodegradation and chemotaxis of polychlorinated biphenyls, biphenyls, and their metabolites by Rhodococcus spp. Biodegradation. 29: 1–10.

    PubMed  Google Scholar 

  32. Yang, T., L. Ren, Y. Jia, S. Fan, J. Wang, J. Wang, R. Nahurira, H. Wang, and Y. Yan (2018) Biodegradation of di-(2-ethylhexyl) phthalate by Rhodococcus ruber YC-YT1 in contaminated water and soil. Int. J. Environ. Res. Public Health. 15: 964.

    PubMed Central  Google Scholar 

  33. Parach, A., A. Rezvani, M. M. Assadi, and B. Akbari-Adergani (2017) Biodegradation of heavy crude oil using persian gulf autochthonous bacterium. Int. J. Environ. Res. 11: 667–675.

    CAS  Google Scholar 

  34. Kong, F. X., G. D. Sun, and Z. P. Liu (2018) Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: Performance and mechanism. Chemosphere. 198: 83–91.

    CAS  PubMed  Google Scholar 

  35. Mukherjee, S., U. RoyChaudhuri, and P. P. Kundu (2018) Biodegradation of polyethylene via complete solubilization by the action of Pseudomonas fluorescens, biosurfactant produced by Bacillus licheniformis and anionic surfactant. J. Chem. Technol. Biotechnol. 93: 1300–1311.

    CAS  Google Scholar 

  36. Santo, M., R. Weitsman, and A. Sivan (2013) The role of the copper-binding enzyme — laccase — in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeterior. Biodegradation. 84: 204–210.

    CAS  Google Scholar 

  37. Mor, R. and A. Sivan (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene. Biodegradation. 19: 851–858.

    CAS  PubMed  Google Scholar 

  38. Lin, C., L. Gan, and Z. L. Chen (2010) Biodegradation of naphthalene by strain Bacillus fusiformis (BFN). J. Hazard. Mater. 182: 771–777.

    CAS  PubMed  Google Scholar 

  39. Ren, L., Y. Jia, N. Ruth, Y. Shi, J. Wang, C. Qiao, and Y. Yan (2016) Biotransformations of bisphenols mediated by a novel Arthrobacter sp. strain YC-RL1. Appl. Microbiol. Biotechnol. 100: 1967–1976.

    CAS  PubMed  Google Scholar 

  40. Pi, Y., M. Bao, Y. Li, G. Li, J. Lu, and P. Sun (2015) Characterization of crude oil degrading microbial cultures isolated in Qingdao China. RSC Adv. 5: 97665–97674.

    CAS  Google Scholar 

  41. Nahurira, R., L. Ren, J. Song, Y. Jia, J. Wang, S. Fan, H. Wang, and Y. Yan (2017) Degradation of di(2-Ethylhexyl) phthalate by a novel Gordonia alkanivorans Strain YC-RL2. Curr. Microbiol. 74: 309–319.

    CAS  PubMed  Google Scholar 

  42. El-Naas, M. H., S. A. Al-Muhtaseb, and S. Makhlouf (2009) Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J. Hazard. Mater. 164: 720–725.

    CAS  PubMed  Google Scholar 

  43. Sahinkaya, E. and F. B. Dilek (2005) Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge-evaluation of biokinetic coefficients. Environ. Res. 99: 243–252.

    CAS  PubMed  Google Scholar 

  44. Zhou, Y., X. Gu, R. Zhang, L. Chen, and J. Lu (2017) Microbial degradation of diesel oil and heavy oil in the presence of modified clay. Energy Sources Part A-Recovery Util. Environ. Eff. 39: 326–331.

    CAS  Google Scholar 

  45. Mukherji, S. and I. Chosh (2012) Bacterial degradation of high molecular weight polynuclear aromatic hydrocarbons. pp. 189–211. In: S. N. Singh (ed.). Microbial Degradation of Xenobiotics. Springer-Verlag Berlin Heidelberg, Berlin, Germany.

    Google Scholar 

  46. Cheng, Z., C. Li, C. Kennes, J. Ye, D. Chen, S. Zhang, J. Chen, and J. Yu (2017) Improved biodegradation potential of chlorobenzene by a mixed fungal-bacterial consortium. Int. Biodeterior. Biodegradation. 123: 276–285.

    CAS  Google Scholar 

  47. Ansede, J. H., P. J. Pellechia, and D. C. Yoch (1999) Metabolism of acrylate to beta-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl. Environ. Microbiol. 65: 5075–5081.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wampler, D. A. and S. A. Ensign (2005) Photoheterotrophic metabolism of acrylamide by a newly isolated strain of Rhodopseudomonas palustris. Appl. Environ. Microbiol. 71: 5850–5857.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Primary Research & Development Plan (2018YFE0120300) and the Natural Science Foundation of China (21777142, 22011530015) and Zhejiang Shuren University Basic Scientific Research Special Funds (2020XZ012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

The authors declare that they have no conflict of interest. Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Chen, Y., Dai, L. et al. Rapid and Complete Biodegradation of Acrylic Acid by a Novel Strain Rhodococcus ruber JJ-3: Kinetics, Carbon Balance, and Degradation Pathways. Biotechnol Bioproc E 25, 589–598 (2020). https://doi.org/10.1007/s12257-019-0465-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0465-z

Keywords

Navigation