Skip to main content

Advertisement

Log in

Valorization of jute (Corchorus sp.) biomass for bioethanol production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The enormous availability of lignocellulosic biomass makes it a potential renewable feedstock for the continuous supply of second-generation bioethanol. The present study focuses on the exploitation of jute biomass left over after fiber extraction for bioethanol production by subjecting it to physical and chemical pretreatments (alkali, acid, ammonia fiber expansion, steam) followed by enzymatic saccharification and fermentation. The compositional analysis of jute biomass indicated that it contained cellulose (42.52 ± 5.54%), hemicellulose (12.24 ± 0.06%), lignin (31.58 ± 3.67%), and extractives (6.21 ± 0.42%). The biomass was subjected to different pretreatments and the structural and chemical changes along with crystallinity of cellulose were examined through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction, respectively. Enzymatic saccharification of pretreated biomass revealed that among all the pretreatment methods, alkali (2% NaOH) treated substrate produced significantly higher amount of reducing sugar (19.51 g/L) compared with other pretreated biomass after 72 h of hydrolysis. The fermentation of the reducing sugars released during saccharification was carried out by a thermotolerant yeast Saccharomyces cerevisiae JRC6 resulting in 7.55 g/L of ethanol within 72 h of fermentation with 77.73% fermentation efficiency. Furthermore, lignin was aslo recovered from the spent liquor obtained after alkali pretreatment of the substrate and the remnant wash was analyzed by LC-MS for the presence of valuable platform chemicals. This study for the first time illustrates the potential of jute sticks as a feedstock for second-generation bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamm B, Kamm M, Gruber PR, Kromus S (2006) Biorefinery systems–an overview. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries–industrial processes and products, status quo and future directions. Wiley-Verlag, Weinheim, pp 3–40

    Google Scholar 

  2. Mabee WE, Gregg DJ, Saddler JN (2005) Assessing the emerging biorefinery sector in Canada. Appl Biochem Biotechnol 123(1–3):0765–0778. https://doi.org/10.1385/abab:123:1-3:0765

    Article  Google Scholar 

  3. Lashinsky A, Schwartz ND (2006) How to beat the high cost of gasoline, Fortune 74, 82

  4. Patil V, Tran K-Q, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9(7):1188–1195. https://doi.org/10.3390/ijms9071188

    Article  Google Scholar 

  5. Soo C-S, Yap W-S, Hon W-M, Phang L-Y (2015) Mini review: hydrogen and ethanol co-production from waste materials via microbial fermentation. World J Microbiol Biotechnol 31(10):1475–1488. https://doi.org/10.1007/s11274-015-1902-6

    Article  Google Scholar 

  6. Wang M, Zhou D, Wang Y, Wei S, Yang W, Kuang M, Du S (2016) Bioethanol production from cotton stalk: a comparative study of various pretreatments. Fuel 184:527–532. https://doi.org/10.1016/j.fuel.2016.07.061

    Article  Google Scholar 

  7. Lavanya A K, Sharma A, Choudhary S B, Sharma H K, Nain P K S, Singh S, Nain L (2019) Mesta (Hibiscus spp.)–a potential feedstock for bioethanol production. Energy Sources Part A 1–14. https://doi.org/10.1080/15567036.2019.1618980

  8. Ghosh BK, Jethi A (2013) Growth and instability in world jute production: a disaggregated analysis. Int J Electron Commun Technol 4:191–195

    Google Scholar 

  9. Mondal D, Bandyopadhyay AK (2014) Adoption of jute production technology in West Bengal. Econ Aff 59:701–709

    Google Scholar 

  10. Directorate of Economics and Statistics (2018-2019) Department of Agriculture, Cooperation and Farmer’s Welfare, Ministry of Agriculture and Farmer’s Welfare, Govt of India https://eands.dacnet.nic.in/

  11. National Jute Board (2010) Ministry of Textile, Govt. of India. https://www.jute.com/ [12] Ragauskas A J (2006) The Path Forward for Biofuels and Biomaterials. Science 311(5760): 484–489.https://doi.org/10.1126/science.1114736

  12. Ragauskas AJ (2006) The Path Forward for Biofuels and Biomaterials. Science 311(5760):484–489. https://doi.org/10.1126/science.1114736

    Article  Google Scholar 

  13. Hu L, Pan H, Zhou Y, Zhang M (2011) Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. BioResources 6(3):3515–3525

    Article  Google Scholar 

  14. Min D, Waters Smith S, Chang H, Jameel H (2013) Influence of isolation condition on structure of milled wood lignin characterized by quantitative 13C nuclear magnetic resonance spectroscopy. BioResources 8(2):1790–1800. https://doi.org/10.15376/biores.8.2.1790-1800

    Article  Google Scholar 

  15. Brosse N, Mohamad Ibrahim MN, Abdul Rahim A (2011) Biomass to bioethanol: initiatives of the future for lignin. ISRN Mater Sci 2011:1–10. https://doi.org/10.5402/2011/461482

    Article  Google Scholar 

  16. Jackson ML (1973) Methods of chemical analysis. Prentice Hall of India Pvt, New Delhi

    Google Scholar 

  17. NREL (National Renewable Energy Laboratory), CO (2012). Determination of structural carbohydrates and lignin in biomass in the LAP (Laboratory Analytical Procedure)

  18. Hestrin S (1949) The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J Biol Chem 180(1):249–261

    Article  Google Scholar 

  19. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54(2):484–489. https://doi.org/10.1016/0003-2697(73)90377-1

    Article  Google Scholar 

  20. Kaur A, Kuhad RC (2019) Valorization of rice straw for ethanol production and lignin recovery using combined acid-alkali pre-treatment. BioEnergy Res 12(3):570–582. https://doi.org/10.1007/s12155-019-09988-3

    Article  Google Scholar 

  21. Miller GL (1959) Use of dinitrosalycilic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  Google Scholar 

  22. Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96(18):2014–2018. https://doi.org/10.1016/j.biortech.2005.01.016

    Article  Google Scholar 

  23. Bajpai P (2016) Pretreatment of lignocellulosic biomass. Pretreatment of Lignocellulosic Biomass for Biofuel Production 2016: 17–70. https://doi.org/10.1007/978-981-10-0687-6_4

  24. Lau MW, Gunawan C, Dale BE (2009) The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotechnol Biofuels 2(1):30. https://doi.org/10.1186/1754-6834-2-30

    Article  Google Scholar 

  25. Tarkow H, Feist W C (1969) A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. Cellulases and Their Applications 197–218. https://doi.org/10.1021/ba-1969-0095.ch012

  26. Helle S, Cameron D, Lam J, White B, Duff S (2003) Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae. Enzym Microb Technol 33(6):786–792. https://doi.org/10.1016/s0141-0229(03)00214-x

    Article  Google Scholar 

  27. Yuan Y, Teng Q, Zhong R, Haghighat M, Richardson EA, Ye ZH (2016) Mutations of arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition. PLoS One 11(1):e0146460. https://doi.org/10.1371/journal.pone.0146460

    Article  Google Scholar 

  28. Sorek N, Yeats TH, Szemenyei H, Youngs H, Somerville CR (2014) The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. Bioscience 64(3):192–201. https://doi.org/10.1093/biosci/bit037

    Article  Google Scholar 

  29. Selig MJ, Adney WS, Himmel ME, Decker SR (2009) The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose 16(4):711–722. https://doi.org/10.1007/s10570-009-9322-0

    Article  Google Scholar 

  30. Cho DH, Shin S-J, Bae Y, Park C, Kim YH (2010) Enhanced ethanol production from deacetylated yellow poplar acid hydrolysate by Pichia stipitis. Bioresour Technol 101(13):4947–4951. https://doi.org/10.1016/j.biortech.2009.11.014

    Article  Google Scholar 

  31. Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3. Biotech 5(5):597–609. https://doi.org/10.1007/s13205-015-0279-4

    Article  Google Scholar 

  32. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic recativity. In: Finkelstein M, Davison BH (eds) Twenty-first symposium on biotechnology for fuels and chemicals. Springer

  33. Grohmann K, Mitchell DJ, Himmel ME, Dale BE, Schroeder HA (1989) The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis. Appl Biochem Biotechnol 20-21(1):45–61. https://doi.org/10.1007/bf02936472

    Article  Google Scholar 

  34. Bouveng HO, Høeg H, Michelsen K, Nielsen GB, Nord H, Jart A (1961) Phenylisocyanate derivatives of carbohydrates. II. Location of the O-acetyl groups in birch xylan. Acta Chem Scand 15:96–100. https://doi.org/10.3891/acta.chem.scand.15-0096

    Article  Google Scholar 

  35. Gharpuray MM, Lee Y-H, Fan LT (1983) Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis. Biotechnol Bioeng 25(1):157–172. https://doi.org/10.1002/bit.260250113

    Article  Google Scholar 

  36. Kusmiyati K, Anarki ST, Nugroho SW, Widiastutik R, Hadiyanto H (2019) Effect of dilute acid and alkaline pretreatments on enzymatic saccharfication of palm tree trunk waste for bioethanol production. Bull Chem React Eng Catal 14(3):705. https://doi.org/10.9767/bcrec.14.3.4256.705-714

    Article  Google Scholar 

  37. Sharma S, Sharma V, Kuila A (2016) Cellulase production using natural medium and its application on enzymatic hydrolysis of thermo chemically pretreated biomass. 3 Biotech 6(2): https://doi.org/10.1007/s13205-016-0465-z

  38. Zeng J, Singh D, Chen S (2011) Biological pretreatment of wheat straw by Phanerochaetechrysosporium supplemented with inorganic salts. Bioresour Technol 102(3):3206–3214. https://doi.org/10.1016/j.biortech.2010.11.008

    Article  Google Scholar 

  39. Trache D, Hussin MH, Hui Chuin CT, Sabar S, Fazita MRN, Taiwo OFA, Haafiz MKM (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromol 93:789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056

    Article  Google Scholar 

  40. Sun Y, Cheng J (2005) Dilute acid pretreatment of rye straw and Bermuda grass for ethanol production. Bioresour Technol 96(14):1599–1606. https://doi.org/10.1016/j.biortech.2004.12.022

    Article  Google Scholar 

  41. He Y, Pang Y, Liu Y, Li X, Wang K (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuel 22(4):2775–2781. https://doi.org/10.1021/ef8000967

    Article  Google Scholar 

  42. Zhang S, Xu Y, Hanna MA (2011) Pretreatment of corn stover with twin-screw extrusion followed by enzymatic saccharification. Appl Biochem Biotechnol 166(2):458–469. https://doi.org/10.1007/s12010-011-9441-6

    Article  Google Scholar 

  43. Hocking MB (1997) Vanillin: synthetic flavoring from spent sulfite liquor. J Chem Educ 74(9):1055. https://doi.org/10.1021/ed074p1055

    Article  Google Scholar 

  44. Prothmann J, Spégel P, Sandahl M, Turner C (2018) Identification of lignin oligomers in Kraft lignin using ultra-high-performance liquid chromatography/high-resolution multiple-stage tandem mass spectrometry (UHPLC/HRMSn). Anal Bioanal Chem 410(29):7803–7814. https://doi.org/10.1007/s00216-018-1400-4

    Article  Google Scholar 

  45. Mota MIF, Rodrigues Pinto PC, Loureiro JM, Rodrigues AE (2015) Recovery of vanillin and syringaldehyde from lignin oxidation: a review of separation and purification processes. Sep Purif Rev 45(3):227–259. https://doi.org/10.1080/15422119.2015.1070178

    Article  Google Scholar 

  46. Du S, Su X, Yang W, Wang Y, Kuang M, Ma L, Zhou D (2016) Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization. Carbohydr Polym 140:279–286. https://doi.org/10.1016/j.carbpol.2015.12.056

    Article  Google Scholar 

  47. Wang Q, Hu J, Shen F, Mei Z, Yang G, Zhang Y, Deng S (2016) Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): investigations on pretreatment conditions and structure changes. Bioresour Technol 199:245–257. https://doi.org/10.1016/j.biortech.2015.07.112

    Article  Google Scholar 

  48. Khan MA, Ashraf SM, Malhotra VP (2004) Eucalyptus bark lignin substituted phenol formaldehyde adhesives: a study on optimization of reaction parameters and characterization. J Appl Polym Sci 92(6):3514–3523. https://doi.org/10.1002/app.20374

    Article  Google Scholar 

  49. Kang KE, Jeong G-T, Park D-H (2011) Pretreatment of rapeseed straw by sodium hydroxide. Bioprocess Biosyst Eng 35(5):705–713. https://doi.org/10.1007/s00449-011-0650-8

    Article  Google Scholar 

  50. Akhtar MS, Saleem M, Ruby G (2001) Enzymatic saccharification of lignocellulosic materials by the xylanase of Bacillus subtilis. J Biol Sci 1(5):398–400. https://doi.org/10.3923/jbs.2001.398.400

    Article  Google Scholar 

  51. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875. https://doi.org/10.1016/j.enconman.2010.08.013

    Article  Google Scholar 

  52. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98(16):3000–3011. https://doi.org/10.1016/j.biortech.2006.10.022

    Article  Google Scholar 

  53. Millett MA, Baker AJ, Satter LD (1976) Physical and chemical pretreatments for enhancing cellulose saccharification. Biotechnol Bioeng Symp 6:125–153

    Google Scholar 

  54. Li Y, Ruan R, Chen PL, Liu Z, Pan X, Lin X, Yang T (2004) Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. Trans ASAE 47(3):821–825. https://doi.org/10.13031/2013.16078

    Article  Google Scholar 

  55. Khuong LD, Kondo R, De Leon R, Kim Anh T, Shimizu K, Kamei I (2014) Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60. Int Biodeterioration Biodegradation 88:62–68. https://doi.org/10.1016/j.ibiod.2013.12.008

    Article  Google Scholar 

  56. Wongwatanapaiboon J, Kangvansaichol K, Burapatana V, Inochanon R, Winayanuwattikun P, Yongvanich T, Chulalaksananukul W (2012) The potential of cellulosic ethanol production from grasses in Thailand. J Biomed Biotechnol 2012:1–10. https://doi.org/10.1155/2012/303748

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the technical help provided by Dr. Anamika Sharma, Division of Microbiology during course of this study. FTIR facility provided by Dr. Rajesh Kumar, Agricultural Chemicals is acknowledged. LC-MS analysis done at the Central Instrumentation Facility of University of Delhi, South Campus, New Delhi is also acknowledged.

Funding

 The authors acknowledge the grant received from ICAR-AMAAS. Abha Sharma is also thankful to the  Department of Science and Technology (File No. LS/700/2016) for the grant under Wos-A scheme. All the authors thank ICAR-IARI, New Delhi for providing essential facilities for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lata Nain.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Sharma, A., Sharma, P. et al. Valorization of jute (Corchorus sp.) biomass for bioethanol production. Biomass Conv. Bioref. 12, 5209–5220 (2022). https://doi.org/10.1007/s13399-020-00937-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00937-1

Keywords

Navigation