Skip to main content
Log in

Zinc Switch in Pig Heart Lipoamide Dehydrogenase: Steady-State and Transient Kinetic Studies of the Diaphorase Reaction

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Elevation of intracellular Zn2+ following ischemia contributes to cell death by affecting mitochondrial function. Zn2+ is a differential regulator of the mitochondrial enzyme lipoamide dehydrogenase (LADH) at physiological concentrations (Ka = 0.1 µM free zinc), inhibiting lipoamide and accelerating NADH dehydrogenase activities. These differential effects have been attributed to coordination of Zn2+ by LADH active-site cysteines. A detailed kinetic mechanism has now been developed for the diaphorase (NADH-dehydrogenase) reaction catalyzed by pig heart LADH using 2,6-dichlorophenol-indophenol (DCPIP) as a model quinone electron acceptor. Anaerobic stopped-flow experiments show that two-electron reduced LADH is 15-25-fold less active towards DCPIP reduction than four-electron reduced enzyme, or Zn2+-modified reduced LADH (the corresponding values of the rate constants are (6.5 ± 1.5) × 103 M–1·s–1, (9 ± 2) × 104 M–1·s–1, and (1.6 ± 0.5) × 105 M–1·s–1, respectively). Steady-state kinetic studies with different diaphorase substrates show that Zn2+ accelerates reaction rates exclusively for two-electron acceptors (duroquinone, DCPIP), but not for one-electron acceptors (benzoquinone, ubiquinone, ferricyanide). This implies that the two-electron reduced form of LADH, prevalent at low NADH levels, is a poor two-electron donor compared to the four-electron reduced or Zn2+-modified reduced LADH forms. These data suggest that zinc binding to the active-site thiols switches the enzyme from one- to two-electron donor mode. This zinc-activated switch has the potential to alter the ratio of superoxide and H2O2 generated by the LADH oxidase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Scheme 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

DCPIP:

2,6-dichlorophenol-indophenol

LADH:

dihydrolipoyl dehydrogenase (=lipoamide dehydrogenase)

KGDHC:

α-ketoglutarate dehydrogenase complex

REFERENCES

  1. Koh, J.-Y., Suh, S. W., Gwag, B. J., He, Y. Y., Hsu, C. Y., and Choi, D. W. (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia, Science, 272, 1013-1016, doi: https://doi.org/10.1126/science.272.5264.1013.

    Article  CAS  PubMed  Google Scholar 

  2. Choi, D. W., and Koh, J. Y. (1998) Zinc and brain injury, Ann. Rev. Neurosci., 21, 347-375, doi: https://doi.org/10.1146/annurev.neuro.21.1.347.

    Article  CAS  PubMed  Google Scholar 

  3. Sensi, S. L., Paoletti, P., Bush, A. I., and Sekler, I. (2009) Zinc in the physiology and pathology of the CNS, Nat. Rev. Neurosci., 10, 780-791, doi: https://doi.org/10.1038/nrn2734.

    Article  CAS  PubMed  Google Scholar 

  4. Shuttleworth, C. W., and Weiss, J. H. (2011) Zinc: new clues to diverse roles in brain ischemia, Trends Pharmacol. Sci., 32, 480-486, doi: https://doi.org/10.1016/j.tips.2011.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Skulachev, V. P., Christyakov, V. V., Jasaitis, A. A., and Smirnova, E. G. (1967) Inhibition of the respiratory chain by zinc ions, Biochem. Biophys. Res. Commun., 26, 1-6, doi: https://doi.org/10.1016/0006-291x(67)90242-2.

    Article  CAS  PubMed  Google Scholar 

  6. Sensi, S. L., Yin, H. Z., Carriedo, S. G., Rao, S. S., and Weiss, J. H. (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production, Proc. Natl. Acad. Sci. USA, 96, 2414-2419, doi: https://doi.org/10.1073/pnas.96.5.2414.

    Article  CAS  PubMed  Google Scholar 

  7. Dong, W., Qi, Z., Liang, J., Shi, W., Zhao, Y., Luo, Y., Ji, X., and Liu, K. J. (2015) Reduction of zinc accumulation in mitochondria contributes to decreased cerebral ischemic injury by normobaric hyperoxia treatment in an experimental stroke model, Exp. Neurol., 272, 181-189, doi: https://doi.org/10.1016/j.expneurol.2015.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gazaryan, I. G., Krasinskaya, I. P., Kristal, B. S., and Brown, A. M. (2007) Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition, J Biol. Chem., 282, 24373-24380, doi: https://doi.org/10.1074/jbc.M611376200.

    Article  CAS  PubMed  Google Scholar 

  9. Ji, S. G., Medvedeva, Yu. V., and Weiss, J. H. (2020) Zn2+ entry through the mitochondrial calcium uniporter is a critical contributor to mitochondrial dysfunction and neurodegeneration, Exp. Neurol., 325, 113161, doi: https://doi.org/10.1016/j.expneurol.2019.113161.

    Article  CAS  PubMed  Google Scholar 

  10. Brown, A. M., Kristal, B. S., Effron, M. S., Shestopalov, A. I., Ullucci, P. A., Sheu, K.-F. R., Blass, J. P., and Cooper, A. J. L. (2000) Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex, J. Biol. Chem., 275, 13441-13447, doi: https://doi.org/10.1074/jbc.275.18.13441.

    Article  CAS  PubMed  Google Scholar 

  11. Casola, L., Brumby, P. E., and Massey, V. (1966) The reversible conversion of lipoyl dehydrogenase to an artifactual enzyme by oxidation of sulfhydryl groups, J. Biol. Chem., 241, 4977-4984.

    CAS  PubMed  Google Scholar 

  12. Veeger, C., and Massey, V. (1962) Inhibition of lipoyl dehydrogenase by trace metals, Biochim. Biophys. Acta, 64, 83-100, doi: https://doi.org/10.1016/0006-3002(60)90108-6.

    Article  CAS  PubMed  Google Scholar 

  13. Casola, L., and Massey, V. (1966) Differential effects of mercurial on the lipoyl reducatase and diaphorase activities of lipoyl dehydrogenase, J. Biol. Chem., 241, 4985-4993.

    CAS  PubMed  Google Scholar 

  14. Nakamura, M., and Yamazaki, I. (1972) One-electron transfer reactions in biochemical systems. VI. Changes in electron transfer mechanism of lipoamide dehydrogenase by modification of sulfhydryl groups, Biochim. Biophys. Acta, 267, 249-257, doi: https://doi.org/10.1016/0005-2728(72)90113-2.

    Article  CAS  PubMed  Google Scholar 

  15. Thorpe, C., and Williams, C. H., Jr. (1975) Modification of pig heart lipoamide dehydrogenase by cupric ions, Biochemistry, 14, 2419-2424, doi: https://doi.org/10.1021/bi00682a023.

    Article  CAS  PubMed  Google Scholar 

  16. Lowe, C. R. (1977) Immobilised lipoamide dehydrogenase. 2. Properties of the enzyme immobilised to agarose through spacer molecules of various lengths, Eur. J. Biochem., 76, 401-409, doi: https://doi.org/10.1111/j.1432-1033.1977.tb11608.x.

    Article  CAS  PubMed  Google Scholar 

  17. Gutierrez Correa, J., and Stoppani, A. O. M. (1993) Inactivation of lipoamide dehydrogenase by cobalt(II) and iron(II) Fenton systems: effect of metal chelators, thiol compounds and adenine nucleotides, Free Radic. Res. Commun., 19, 303-314, doi: https://doi.org/10.3109/10715769309056519.

    Article  CAS  PubMed  Google Scholar 

  18. Olsson, J. M., Xia, L., Eriksson, L. C., and Bjornstedt, M. (1999) Ubiquinone is reduced by lipoamide dehydrogenase and this reaction is potently stimulated by zinc, FEBS Lett., 448, 190-192, doi: https://doi.org/10.1016/s0014-5793(99)00363-4.

    Article  CAS  PubMed  Google Scholar 

  19. Xia, L., Bjornstedt, M., Nordman, T., Eriksson, L. C., and Olsson, J. M. (2001) Reduction of ubiquinone by lipoamide dehydrogenase. An antioxidant regenerating pathway, Eur. J. Biochem., 268, 1486-1490, doi: https://doi.org/10.1046/j.1432-1327.2001.02013.x.

    Article  CAS  PubMed  Google Scholar 

  20. Hopkins, N., and Williams, C. H., Jr. (1995) Characterization of lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S, Biochemistry, 34, 11757-11765, doi: https://doi.org/10.1021/bi00037a013.

    Article  CAS  PubMed  Google Scholar 

  21. Gazaryan, I. G., Krasnikov, B. F., Ashby, G. A., Thorneley, R. N., Kristal, B. S., and Brown, A. M. (2002) Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase, J. Biol. Chem., 277, 10064-10072, doi: https://doi.org/10.1074/jbc.M108264200.

    Article  CAS  PubMed  Google Scholar 

  22. Popov, V. O., Gazarian, I. G., Egorov, A. M., and Berezin, I. V. (1985) NAD-dependent hydrogenase from the hydrogen-oxidizing bacterium Alcaligenes eutrophus Z-1. Kinetic studies of the NADH-dehydrogenase activity, Biochim. Biophys. Acta, 827, 466-471.

    Article  CAS  Google Scholar 

  23. Maeda-Yorita, K., Russell, G. C., Guest, J. R., Massey, V., and Williams, C. H., Jr. (1991) Properties of lipoamide dehydrogenase altered by site-directed mutagenesis at a key residue (I184Y) in the pyridine nucleotide binding domain, Biochemistry, 30, 11788-11795, doi: https://doi.org/10.1021/bi00115a008.

    Article  CAS  PubMed  Google Scholar 

  24. Van Berkel, W. J. H., Regelink, A. G., Beintema, J. J., and de Kok, A. (1991) The conformational stability of the redox states of lipoamide dehydrogenase from Azotobacter vinelandii, Eur. J. Biochem., 202, 1049-1055, doi: https://doi.org/10.1111/j.1432-1033.1991.tb16469.x.

    Article  CAS  PubMed  Google Scholar 

  25. Tsai, C. S. (1980) Kinetic studies of multifunctional reactions catalysed by lipoamide dehydrogenase, Int. J. Biochem., 11, 407-413, doi: https://doi.org/10.1016/0020-711x(80)90311-0.

    Article  CAS  PubMed  Google Scholar 

  26. Vienozinskis, J., Butkus, A., Cenas, N., and Kulys, J. (1990) The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase, Biochem. J., 269, 101-105, doi: https://doi.org/10.1042/bj2690101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Williams, C. H., Arscott, L. D., Muller, S., Lennon, B. W., Ludwig, M. L., Wang, P. F., Veine, D. M., Becker, K., and Schirmer, R. H. (2000) Thioredoxin reductase two modes of catalysis have evolved, Eur. J. Biochem., 267, 6110-6117, doi: https://doi.org/10.1046/j.1432-1327.2000.01702.x.

    Article  CAS  PubMed  Google Scholar 

  28. Lennon, B. W., and Williams, C. H., Jr. (1996) Enzyme-monitored turnover of Escherichia coli thioredoxin reductase: insights for catalysis, Biochemistry, 35, 4704-4712, doi: https://doi.org/10.1021/bi952521i.

    Article  CAS  PubMed  Google Scholar 

  29. Lennon, B. W., Williams, C. H., Jr., and Ludwig, M. L. (2000) Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase, Science, 289, 1190-1194, doi: https://doi.org/10.1126/science.289.5482.1190.

    Article  CAS  PubMed  Google Scholar 

  30. Williams, C. H., Jr. (1995) Mechanism and structure of thioredoxin reductase from Escherichia coli, FASEB J., 9, 1267-1276, doi: https://doi.org/10.1096/fasebj.9.13.7557016.

    Article  CAS  PubMed  Google Scholar 

  31. Dooijewaard, G., and Slater, E. C. (1976) Steady-state kinetics of high molecular weight (type-I) NADH dehydrogenase, Biochim. Biophys. Acta, 440, 1-15, doi: https://doi.org/10.1016/0005-2728(76)90109-2.

    Article  CAS  PubMed  Google Scholar 

  32. Bando, Y., and Aki, K. (1991) Mechanisms of generation of oxygen radicals and reductive mobilization of ferritin iron by lipoamide dehydrogenase, J. Biochem., 109, 450-454, doi: https://doi.org/10.1093/oxfordjournals.jbchem.a123402.

    Article  CAS  PubMed  Google Scholar 

  33. Gaballa, A., and Helmann, J. D. (2002) A Peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis, Mol. Microbiol., 45, 997-1005, doi: https://doi.org/10.1046/j.1365-2958.2002.03068.x.

    Article  CAS  PubMed  Google Scholar 

  34. Nordman, T., Xia, L., Björkhem-Bergman, L., Damdimopoulos, A., Nalvarte, I., Arnér, E. S., Spyrou, G., Eriksson, L. C., Björnstedt, M., and Olsson, J. M. (2003) Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase, Biofactors, 18, 45-50, doi: https://doi.org/10.1002/biof.5520180206.

    Article  CAS  PubMed  Google Scholar 

  35. Galasso, S. L., and Dyck, R. H. (2007) The role of zinc in cerebral ischemia, Mol. Med., 13, 380-387, doi: https://doi.org/10.2119/2007-00044.Galasso.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Levenson, C. W. (2005) Zinc supplementation: neuroprotective or neurotoxic? Nutr. Rev., 63, 122-125, doi: https://doi.org/10.1111/j.1753-4887.2005.tb00130.x.

    Article  PubMed  Google Scholar 

  37. Ischia, J., Bolton, D. M., and Patel, O. (2019) Why is it worth testing the ability of zinc to protect against ischaemia reperfusion injury for human application, Metallomics, 11, 1330-1343, doi: https://doi.org/10.1039/c9mt00079h.

    Article  CAS  PubMed  Google Scholar 

  38. Aquilani, R., Baiardi, P., Scocchi, M., Iadarola, P., Verri, M., Sessarego, P., Boschi, F., Pasini, E., Pastoris, O., and Viglio, S. (2009) Normalization of zinc intake enhances neurological retrieval of patients suffering from ischemic strokes, Nutr. Neurosci., 12, 219-225, doi: https://doi.org/10.1179/147683009X423445.

    Article  CAS  PubMed  Google Scholar 

  39. Kitamura, Y., Iida, Y., Abe, J., Ueda, M., Mifune, M., Kasuya, F., Ohta, M., Igarashi, K., Saito, Y., and Saji, H. (2006) Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model, J. Pharmacol. Sci., 100, 142-148, doi: https://doi.org/10.1254/jphs.fp0050805.

    Article  CAS  PubMed  Google Scholar 

  40. Osipyants, A. I., Smirnova, N. A., Khristichenko, A. Yu., Nikulin, S. V., Zakhariants, A. A., Tishkov, V. I., Gazaryan, I. G., and Poloznikov, A. A. (2018) Metal ions as activators of hypoxia inducible factor, Moscow University Chem. Bull., 73, 13-18.

    Article  Google Scholar 

  41. Maret, W. (2015) Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules, Metallomics, 7, 202-211, doi: https://doi.org/10.1039/c4mt00230j.

    Article  CAS  PubMed  Google Scholar 

  42. McCranor, B. J., Bozym, R. A., Vitolo, M. I., Fierke, C. A., Bambrick, L., Polster, B. M., Fiskum, G., and Thompson, R. B. (2012) Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion, J. Bioenerg. Biomembr., 44, 253-263, doi: https://doi.org/10.1007/s10863-012-9427-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Gill A. Ashby and Prof. Roger N. F. Thorneley (UK) for their invaluable help with transient kinetics experiments.

Funding

The work in part was supported by the Russian Foundation for Basic Research (projects Nos. 20-04-00921, 17-54-33027, and 18-29-09154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Brown.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazaryan, I.G., Shchedrina, V.A., Klyachko, N.L. et al. Zinc Switch in Pig Heart Lipoamide Dehydrogenase: Steady-State and Transient Kinetic Studies of the Diaphorase Reaction. Biochemistry Moscow 85, 908–919 (2020). https://doi.org/10.1134/S0006297920080064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920080064

Keywords

Navigation