Skip to main content
Log in

Moderate-Intensity Continuous Training Improves FGF21 and KLB Expression in Obese Mice

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 21 (FGF21) and β-Klotho (KLB) play an important role in preventing and treating overweight and obesity. However, it is unclear what conditions promote FGF21 and KLB expression in different tissues. Therefore, we studied expression of FGF21 and KLB with respect to two exercise regimes: moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) (two popular strategies in weight loss). Mice were randomly divided into three groups (n = 8 per group): MICT, HIIT, and sedentary lifestyle (SED). All mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity. The exercise was performed on a motorized treadmill for another eight weeks and the diet continued in each group. We found that both MICT and HIIT had positive effects on the loss of HFD-induced body weight increase and serum FGF21 levels. HIIT promoted decrease of the body weight and serum triglyceride (TG) levels, while MICT was more effective at enhancing FGF21 and KLB expression in the liver, brown adipose tissue (BAT), and muscle at the mRNA and protein levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

BAT:

brown adipose tissue

eWAT:

epididymal white adipose tissue

FGF21:

fibroblast growth factor 21

FGFR:

FGF receptor

KLB:

β-Klotho

HFD:

high-fat diet

HIIT:

high-intensity interval training

MICT:

moderate-intensity continuous training

SED:

sedentary lifestyle

TG:

triglyceride

REFERENCES

  1. Wang, H., Qiang, L., and Farmer, S. R. (2008) Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes, Mol. Cell. Biol., 28, 188-200, doi: https://doi.org/10.1128/Mcb.00992-07.

    Article  PubMed  Google Scholar 

  2. Lobelo, F., Stoutenberg, M., and Hutber, A. (2014) The exercise is medicine global health initiative: a 2014 update, Br. J. Sports Med., 48, 1627-1668, doi: https://doi.org/10.1136/bjsports-2013-093080.

    Article  PubMed  Google Scholar 

  3. Nishimura, T., Nakatake, Y., Konishi, M., and Itoh, N. (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver, Biochim. Biophys. Acta, 1492, 203-206, doi: https://doi.org/10.1016/s0167-4781(00)00067-1.

    Article  CAS  PubMed  Google Scholar 

  4. Kharitonenkov, A., Shiyanova, T. L., Koester, A., Ford, A. M., Micanovic, R., Galbreath, E. J., Sandusky, G. E., Hammond, L. J., Moyers, J. S., Owens, R. A., Gromada, J., Brozinick, J. T., Hawkins, E. D., Wroblewski, V. J., Li, D. S., Mehrbod, F., Jaskunas, S. R., and Shanafelt, A. B. (2005) FGF-21 as a novel metabolic regulator, J. Clin. Invest., 115, 1627-1635, doi: https://doi.org/10.1172/Jci23606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kharitonenkov, A., and Shanafelt, A. B. (2008) Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases, BioDrugs, 22, 37-44, doi: https://doi.org/10.2165/00063030-200822010-00004.

    Article  CAS  PubMed  Google Scholar 

  6. Coskun, T., Bina, H. A., Schneider, M. A., Dunbar, J. D., Hu, C. C., Chen, Y., Moller, D. E., and Kharitonenkov, A. (2008) Fibroblast growth factor 21 corrects obesity in mice, Endocrinology, 149, 6018-6027, doi: https://doi.org/10.1210/en.2008-0816.

    Article  CAS  PubMed  Google Scholar 

  7. Xu, J., Stanislaus, S., Chinookoswong, N., Lau, Y. Y., Hager, T., Patel, J., Ge, H. F., Weiszmann, J., Lu, S. C., Graham, M., Busby, J., Hecht, R., Li, Y. S., Li, Y., Lindberg, R., and Veniant, M. M. (2009) Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects, Am. J. Physiol. Endocinol. Metab., 297, 1105-1114, doi: https://doi.org/10.1152/ajpendo.00348.2009.

    Article  CAS  Google Scholar 

  8. Fazeli, P. K., Lun, M., Kim, S. M., Bredella, M. A., Wright, S., Zhang, Y., Lee, H., Catana, C., Klibanski, A., Patwari, P., and Steinhauser, M. L. (2015) FGF21 and the late adaptive response to starvation in humans, J. Clin. Invest., 125, 4601-4611, doi: https://doi.org/10.1172/Jci83349.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wente, W., Efanov, A. M., Brenner, M., Kharitonenkov, A., Koester, A., Sandusky, G. E., Sewing, S., Treinies, I., Zitzer, H., and Gromada, J. (2006) Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways, Diabetes, 55, 2470-2478, doi: https://doi.org/10.2337/db05-1435.

    Article  CAS  PubMed  Google Scholar 

  10. Bookout, A. L., de Groot, M. H., Owen, B. M., Lee, S., Gautron, L., Lawrence, H. L., Ding, X., Elmquist, J. K., Takahashi, J. S., Mangelsdorf, D. J., and Kliewer, S. A. (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system, Nat. Med., 19, 1147-1152, doi: https://doi.org/10.1038/nm.3249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, C., Huang, Z., Gu, J., Yan, X., Lu, X., Zhou, S., Wang, S., Shao, M., Zhang, F., Cheng, P., Feng, W., Tan, Y., and Li, X. (2015) Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway, Diabetologia, 58, 1937-1948, doi: https://doi.org/10.1007/s00125-015-3630-8.

    Article  CAS  PubMed  Google Scholar 

  12. Hondares, E., Iglesias, R., Giralt, A., Gonzalez, F. J., Giralt, M., Mampel, T., and Villarroya, F. (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue, J. Biol. Chem., 286, 12983-12990, doi: https://doi.org/10.1074/jbc.M110.215889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fisher, F. M., Adams, A., Antonellis, P., Kharitonenkov, A., Flier, J., and Maratos-Flier, E. (2009) Genetic and diet induced obesity are associated with FGF21 resistance in adipose tissue and liver, Obesity, 17, 68-68.

    Article  Google Scholar 

  14. Mashili, F. L., Austin, R. L., Deshmukh, A. S., Fritz, T., Caidahl, K., Bergdahl, K., Zierath, J. R., Chibalin, A. V., Moller, D. E., Kharitonenkov, A., and Krook, A. (2011) Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity, Diabetes Metab. Res. Rev., 27, 286-297, doi: https://doi.org/10.1002/dmrr.1177.

    Article  CAS  PubMed  Google Scholar 

  15. Kharitonenkov, A., Dunbar, J. D., Bina, H. A., Bright, S., Moyers, J. S., Zhang, C., Ding, L., Micanovic, R., Mehrbod, S. F., Knierman, M. D., Hale, J. E., Coskun, T., and Shanafelt, A. B. (2008) FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho, J. Cell. Physiol., 215, 1-7, doi: https://doi.org/10.1002/jcp.21357.

    Article  CAS  PubMed  Google Scholar 

  16. Petryszak, R., Keays, M., Tang, Y. A., Fonseca, N. A., Barrera, E., Burdett, T., Fullgrabe, A., Fuentes, A. M., Jupp, S., Koskinen, S., Mannion, O., Huerta, L., Megy, K., Snow, C., Williams, E., Barzine, M., Hastings, E., Weisser, H., Wright, J., Jaiswal, P., Huber, W., Choudhary, J., Parkinson, H. E., and Brazma, A. (2016) Expression atlas update – an integrated database of gene and protein expression in humans, animals and plants, Nucleic Acids Res., 44, 746-752, doi: https://doi.org/10.1093/nar/gkv1045.

    Article  CAS  Google Scholar 

  17. Diaz-Delfin, J., Hondares, E., Iglesias, R., Giralt, M., Caelles, C., and Villarroya, F. (2012) TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway, Endocrinology, 153, 4238-4245, doi: https://doi.org/10.1210/en.2012-1193.

    Article  CAS  PubMed  Google Scholar 

  18. Wisløff, U., Helgerud, J., Kemi, O. J., and Ellingsen, Ø. (2001) Intensity-controlled treadmill running in rats: VO2 max and cardiac hypertrophy, Am. J. Physiol. Heart Circ. Physiol., 280, 1301-1310, doi: https://doi.org/10.1152/ajpheart.2001.280.3.H1301.

    Article  Google Scholar 

  19. Petot, H., Meilland, R., Le Moyec, L., Mille-Hamard, L., and Billat, V. L. (2012) A new incremental test for VO2 max accurate measurement by increasing VO2 max plateau duration, allowing the investigation of its limiting factors, Eur. J. Appl. Physiol., 112, 2267-2276, doi: https://doi.org/10.1007/s00421-011-2196-5.

    Article  PubMed  Google Scholar 

  20. Ayachi, M., Niel, R., Momken, I., Billat, V. L., and Mille-Hamard, L. (2016) Validation of a ramp running protocol for determination of the true VO2 max in mice, Front. Physiol., 7, 372, doi: https://doi.org/10.3389/fphys.2016.00372.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Geng, L., Liao, B., Jin, L., Huang, Z., Triggle, C. R., Ding, H., Zhang, J., Huang, Y., Lin, Z., and Xu, A. (2019) Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues, Cell Rep., 26, 2738-2752, doi: https://doi.org/10.1016/j.celrep.2019.02.014.

    Article  CAS  PubMed  Google Scholar 

  22. Somm, E., Henry, H., Bruce, S. J., Aeby, S., Rosikiewicz, M., Sykiotis, G. P., Asrih, M., Jornayvaz, F. R., Denechaud, P. D., Albrecht, U., Mohammadi, M., Dwyer, A., Acierno, J. S., Jr., Schoonjans, K., Fajas, L., Greub, G., and Pitteloud, N. (2017) beta-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue, JCI Insight, 2, e91809, doi: https://doi.org/10.1172/jci.insight.91809.

    Article  PubMed Central  Google Scholar 

  23. Tezze, C., Romanello, V., and Sandri, M. (2019) FGF21 as modulator of metabolism in health and disease, Front. Physiol., 10, 419, doi: https://doi.org/10.3389/fphys.2019.00419.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Staiger, H., Keuper, M., Berti, L., Hrabe de Angelis, M., and Haring, H. U. (2017) Fibroblast growth factor 21-metabolic role in mice and men, Endocr. Rev., 38, 468-488, doi: https://doi.org/10.1210/er.2017-00016.

    Article  PubMed  Google Scholar 

  25. Fisher, F. M., and Maratos-Flier, E. (2016) Understanding the physiology of FGF21, Annu. Rev. Physiol., 78, 223-241, doi: https://doi.org/10.1146/annurev-physiol-021115-105339.

    Article  CAS  PubMed  Google Scholar 

  26. Markan, K. R., Naber, M. C., Ameka, M. K., Anderegg, M. D., Mangelsdorf, D. J., Kliewer, S. A., Mohammadi, M., and Potthoff, M. J. (2014) Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding, Diabetes, 63, 4057-4063, doi: https://doi.org/10.2337/db14-0595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, K. H., Kim, S. H., Min, Y. K., Yang, H. M., Lee, J. B., and Lee, M. S. (2013) Acute exercise induces FGF21 expression in mice and in healthy humans, PLoS One, 8, e63517, doi: https://doi.org/10.1371/journal.pone.0063517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dushay, J., Chui, P. C., Gopalakrishnan, G. S., Varela-Rey, M., Crawley, M., Fisher, F. M., Badman, M. K., Martinez-Chantar, M. L., and Maratos-Flier, E. (2010) Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease, Gastroenterology, 139, 456-463, doi: https://doi.org/10.1053/j.gastro.2010.04.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yilmaz, Y., Eren, F., Yonal, O., Kurt, R., Aktas, B., Celikel, C. A., Ozdogan, O., Imeryuz, N., Kalayci, C., and Avsar, E. (2010) Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease, Eur. J. Clin. Invest., 40, 887-892, doi: https://doi.org/10.1111/j.1365-2362.2010.02338.x.

    Article  CAS  PubMed  Google Scholar 

  30. Chavez, A. O., Molina-Carrion, M., Abdul-Ghani, M. A., Folli, F., Defronzo, R. A., and Tripathy, D. (2009) Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance, Diabetes Care, 32, 1542-1546, doi: https://doi.org/10.2337/dc09-0684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji, F., Liu, Y., Hao, J. G., Wang, L. P., Dai, M. J., Shen, G. F., and Yan, X. B. (2019) KLB gene polymorphism is associated with obesity and non-alcoholic fatty liver disease in the Han Chinese, Aging (Albany NY), 11, 7847-7858, doi: https://doi.org/10.18632/aging.102293.

    Article  CAS  Google Scholar 

  32. Samms, R. J., Cheng, C. C., Kharitonenkov, A., Gimeno, R. E., and Adams, A. C. (2016) Overexpression of beta-klotho in adipose tissue sensitizes male mice to endogenous FGF21 and provides protection from diet-induced obesity, Endocrinology, 157, 1467-1480, doi: https://doi.org/10.1210/en.2015-1722.

    Article  CAS  PubMed  Google Scholar 

  33. Hansen, J. S., Clemmesen, J. O., Secher, N. H., Hoene, M., Drescher, A., Weigert, C., Pedersen, B. K., and Plomgaard, P. (2015) Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans, Mol. Metab., 4, 551-560, doi: https://doi.org/10.1016/j.molmet.2015.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hansen, J. S., Pedersen, B. K., Xu, G., Lehmann, R., Weigert, C., and Plomgaard, P. (2016) Exercise-induced secretion of FGF21 and Follistatin are blocked by pancreatic clamp and impaired in type 2 diabetes, J. Clin. Endocrinol. Metab., 101, 2816-2825, doi: https://doi.org/10.1210/jc.2016-1681.

    Article  CAS  PubMed  Google Scholar 

  35. Taniguchi, H., Tanisawa, K., Sun, X., Kubo, T., and Higuchi, M. (2016) Endurance exercise reduces hepatic fat content and serum fibroblast growth factor 21 levels in elderly men, J. Clin. Endocrinol. Metab., 101, 191-198, doi: https://doi.org/10.1210/jc.2015-3308.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, S. J., Hong, H. C., Choi, H. Y., Yoo, H. J., Cho, G. J., Hwang, T. G., Baik, S. H., Choi, D. S., Kim, S. M., and Choi, K. M. (2011) Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women, Clin. Endocrinol. (Oxf), 75, 464-469, doi: https://doi.org/10.1111/j.1365-2265.2011.04078.x.

    Article  CAS  Google Scholar 

  37. Andersen, T. R., Schmidt, J. F., Thomassen, M., Hornstrup, T., Frandsen, U., Randers, M. B., and Bangsbo, J. (2014) A preliminary study: effects of football training on glucose control, body composition, and performance in men with type 2 diabetes, Scand. J. Med. Sci. Sports, 24, 43-56, doi: https://doi.org/10.1111/sms.12259.

    Article  PubMed  Google Scholar 

  38. Besse-Patin, A., Montastier, E., Vinel, C., Castan-Laurell, I., Louche, K., Dray, C., and Valet, P. (2014) Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine, Int. J. Obesity, 38, 707-713, doi: https://doi.org/10.1038/ijo.2013.158.

    Article  CAS  Google Scholar 

  39. Berglund, E. D., Lustig, D. G., Baheza, R. A., Hasenour, C. M., Lee-Young, R. S., Donahue, E. P., and Wasserman, D. H. (2011) Hepatic glucagon action is essential for exercise-induced reversal of mouse fatty liver, Diabetes, 60, 2720-2729, doi: https://doi.org/10.2337/db11-0455.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Loyd, C., Magrisso, I. J., Haas, M., Balusu, S., Krishna, R., Itoh, N., and Habegger, K. M. (2016) Fibroblast growth factor 21 is required for beneficial effects of exercise during chronic high-fat feeding, J. Appl. Physiol., 121, 687-698, doi: https://doi.org/10.1152/japplphysiol.00456.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fletcher, J. A., Linden, M. A., Sheldon, R. D., Meers, G. M., Morris, E. M., Butterfield, A., and Rector, R. S. (2016) Fibroblast growth factor 21 and exercise-induced hepatic mitochondrial adaptations, Am. J. Physiol. Gastrointest. Liver Physiol., 310, 832-843, doi: https://doi.org/10.1152/ajpgi.00355.2015.

    Article  Google Scholar 

  42. Yu, H., Xia, F., Lam, K. S., Wang, Y., Bao, Y., Zhang, J., and Xu, A. (2011) Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans, Clin. Chem., 57, 691-700, doi: https://doi.org/10.1373/clinchem.2010.155184.

    Article  CAS  PubMed  Google Scholar 

  43. Villarroya, F., Cereijo, R., Villarroya, J., and Giralt, M. (2017) Brown adipose tissue as a secretory organ, Nat. Rev. Endocrinol., 13, 26-35, doi: https://doi.org/10.1038/nrendo.2016.136.

    Article  CAS  PubMed  Google Scholar 

  44. Sanchez-Delgado, G., Martinez-Tellez, B., Olza, J., Aguilera, C. M., Gil, A., and Ruiz, J. R. (2015) Role of exercise in the activation of brown adipose tissue, Ann. Nutr. Metab., 67, 21-32, doi: https://doi.org/10.1159/000437173.

    Article  CAS  PubMed  Google Scholar 

  45. Peres Valgas da Silva, C., Hernandez-Saavedra, D., White, J. D., and Stanford, K. I. (2019) Cold and exercise: therapeutic tools to activate brown adipose tissue and combat obesity, Biology (Basel), 8, 9, doi: https://doi.org/10.3390/biology8010009.

    Article  CAS  Google Scholar 

  46. BonDurant, L. D., Ameka, M., Naber, M. C., Markan, K. R., Idiga, S. O., Acevedo, M. R., and Potthoff, M. J. (2017) FGF21 regulates metabolism through adipose-dependent and-independent mechanisms, Cell Metab., 25, 935-944, doi: https://doi.org/10.1016/j.cmet.2017.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Izumiya, Y., Bina, H. A., Ouchi, N., Akasaki, Y., Kharitonenkov, A., and Walsh, K. (2008) FGF21 is an Akt-regulated myokine, FEBS Lett., 582, 3805-3810, doi: https://doi.org/10.1016/j.febslet.2008.10.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Izumiya, Y., Hopkins, T., Morris, C., Sato, K., Zeng, L., Viereck, J., Hamilton, J. A., Ouchi, N., LeBrasseur, N. K., and Walsh, K. (2008) Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice, Cell Metab., 7, 159-172, doi: https://doi.org/10.1016/j.cmet.2007.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, K. H., Jeong, Y. T., Oh, H., Kim, S. H., Cho, J. M., Kim, Y. N., Kim, S. S., Kim, D. H., Hur, K. Y., Kim, H. K., Ko, T., Han, J., Kim, H. L., Kim, J., Back, S. H., Komatsu, M., Chen, H. C., Chan, D. C., Konishi, M., Itoh, N., Choi, C. S., and Lee, M. S. (2013) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine, Nat. Med., 19, 83-92, doi: https://doi.org/10.1038/nm.3014.

    Article  CAS  PubMed  Google Scholar 

  50. Lindegaard, B., Hvid, T., Grondahl, T., Frosig, C., Gerstoft, J., Hojman, P., and Pedersen, B. K. (2013) Expression of fibroblast growth factor-21 in muscle is associated with lipodystrophy, insulin resistance and lipid disturbances in patients with HIV, PLoS One, 8, e55632, doi: https://doi.org/10.1371/journal.pone.0055632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Verzijl, C. R. C., Van De Peppel, I. P., Struik, D., and Jonker, J. W. (2020) Pegbelfermin (BMS-986036): an investigational PEGylated fibroblast growth factor 21 analogue for the treatment of nonalcoholic steatohepatitis, Expert Opin. Investig. Drugs, 29, 125-133, doi: https://doi.org/10.1080/13543784.2020.1708898.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by the Ministry of Education of the People’s Republic of China (project no. 20194180050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhang.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Chen, Y., Liu, Y. et al. Moderate-Intensity Continuous Training Improves FGF21 and KLB Expression in Obese Mice. Biochemistry Moscow 85, 938–946 (2020). https://doi.org/10.1134/S000629792008009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792008009X

Keywords

Navigation