Skip to main content
Log in

Maximum principles and the method of moving planes for the uniformly elliptic nonlocal Bellman operator and applications

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this paper, we establish various maximum principles and develop the method of moving planes for equations involving the uniformly elliptic nonlocal Bellman operator. As a consequence, we derive multiple applications of these maximum principles and the moving planes method. For instance, we prove symmetry, monotonicity and uniqueness results and asymptotic properties for solutions to various equations involving the uniformly elliptic nonlocal Bellman operator in bounded domains, unbounded domains, epigraph or \({\mathbb {R}}^{n}\). In particular, the uniformly elliptic nonlocal Monge–Ampère operator introduced by Caffarelli and Charro (Ann PDE 1:4, 2015) is a typical example of the uniformly elliptic nonlocal Bellman operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H., Kassmann, M.: An analytic approach to purely nonlocal Bellman equations arising in models of stochastic control. J. Differ. Equ. 236(1), 29–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berestycki, H., Caffarelli, L.A., Nirenberg, L.: Inequalitites for second-order elliptic equations with applications to unbounded domains. I. Duke Math. J. 81, 467–494 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Caffarelli, L.A., Nirenberg, L.: Monotonicity for elliptic equations in unbounded Lipschitz domains. Commun. Pure Appl. Math. 50, 1089–1111 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandle, C., Colorado, E., de Pablo, A., Sanchez, U.: A concave–convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. A Math. 143, 39–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrios, B., Del Pezzo, L., García-Melián, J., Quaas, A.: Monotonicity of solutions for some nonlocal elliptic problems in half-spaces. Calc. Var. Partial Differ. Equ. 56(2), 16 (2017). Art. 39

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertoin, J.: Lévy Processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  7. Barrios, B., García-Melián, J., Quaas, A.: A note on the monotonicity of solutions for fractional equations in half-spaces. Proc. Am. Math. Soc. 147(7), 3011–3019 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berestycki, H., Hamel, F., Monneau, R.: One-dimensional symmetry of bounded entire solutions of some elliptic equations. Duke Math. J. 103, 375–396 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biswas, A.: Principal eigenvalues of a class of nonlinear integro-differential operators. J. Differ. Equ. 268(9), 5257–5282 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berestycki, H., Nirenberg, L.: Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations. J. Geom. Phys. 5, 237–275 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berestycki, H., Nirenberg, L.: Some Qualitative Properties of Solutions of Semilinear Elliptic Equations in Cylindrical Domains, Analysis, et Cetera, pp. 115–164. Academic Press, Boston (1990)

    Google Scholar 

  12. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Bras. Mat. (N. S.) 22, 1–37 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L.A.: Interior \(W^{2, p}\) estimates for solutions of the Monge–Ampère equation. Ann. Math. 131(1), 135–150 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, X., Bao, G., Li, G.: The sliding method for the nonlocal Monge–Ampère operator. Nonlinear Anal. 196, 111786 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caffarelli, L.A., Charro, F.: On a fractional Monge–Ampère operator. Ann. PDE 1, 4 (2015)

    Article  MATH  Google Scholar 

  16. Cao, D., Dai, W.: Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity. Proc. R. Soc. Edinb. A Math. 149, 979–994 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, W., Dai, W., Qin, G.: Liouville type theorems, a priori estimates and existence of solutions for critical order Hardy–Hénon equations in \({\mathbb{R}}^N\), preprint, submitted. arXiv:1808.06609

  18. Chang, S.-Y.A., Gonzàlez, MdM: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caffarelli, L.A., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheng, T.: Monotonicity and symmetry of solutions of fractional Laplacian equations. Discr. Contin. Dyn. Syst. A 37, 3587–3599 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng, T., Huang, G., Li, C.: The maximum principles for fractional Laplacian equations and their applications. Commun. Contemp. Math. 19(6), 1750018 (2017). 12 pp

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(3), 615–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, W., Li, C.: Maximum principles for the fractional \(p\)-Laplacian and symmetry of solutions. Adv. Math. 335, 735–758 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, W., Liu, Z.: Maximum principles and monotonicity of solutions for fractional \(p\)-equations in unbounded domains. Preprint (2019). arXiv:1905.06493

  25. Chen, W., Li, C., Li, Y.: A direct method of moving planes for the fractional Laplacian. Adv. Math. 308, 404–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, W., Li, Y., Ma, P.: The Fractional Laplacian, p. 344. World Scientific Publishing Co. Pte. Ltd., Singapore (2020). https://doi.org/10.1142/10550

    Book  Google Scholar 

  28. Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Ampère equation. Commun. Pure Appl. Math. 37(3), 369–402 (1984)

    Article  MATH  Google Scholar 

  29. Constantin, P.: Euler equations, Navier–Stokes equations and turbulence. In: Cannone, M., Miyakawa, T. (eds.) Mathematical Foundation of Turbulent Viscous Flows, Volume 1871 of Lecture Notes in Mathematics, pp. 1–43. Springer, Berlin (2006). https://doi.org/10.1007/11545989_1

    Chapter  Google Scholar 

  30. Chen, W., Qi, S.: Direct methods on fractional equations. Discr. Contin. Dyn. Syst. A 39, 1269–1310 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. PDEs 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Caffarelli, L.A., Silvestre, L.: A nonlocal Monge–Ampère equation. Commun. Anal. Geom. 24(2), 307–335 (2016)

    Article  MATH  Google Scholar 

  33. Caffarelli, L.A., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Caffarelli, L.A., Silvestre, L.: The Evans–Krylov theorem for nonlocal fully nonlinear equations. Ann. Math. 174(2), 1163–1187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Caffarelli, L.A., Vasseur, L.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, W., Wu, L.: The sliding methods for the fractional \(p\)-Laplacian. Adv. Math. 361, 106933 (2020). 26 pp

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, W., Wu, L.: Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities, preprint (2019). arXiv:1905.09999

  39. Chen, W., Wu, L.: A maximum principle on unbounded domains and a Liouville theorem for fractional \(p\)-harmonic functions, preprint (2019). arXiv:1905.09986

  40. Chang, S.-Y.A., Yang, P.C.: On uniqueness of solutions of \(n\)th order differential equations in conformal geometry. Math. Res. Lett. 4, 91–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. De Philippis, G., Figalli, A.: \(W^{2,1}\) regularity for solutions of the Monge–Ampère equation. Invent. Math. 192(1), 55–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dai, W., Fang, Y., Qin, G.: Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes. J. Differ. Equ. 265, 2044–2063 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dai, W., Liu, Z., Wang, P.: Monotonicity and symmetry of positive solutions to fractional \(p\)-Laplacian equation, preprint, submitted for publication (2020)

  44. Dai, W., Qin, G.: Classification of nonnegative classical solutions to third-order equations. Adv. Math. 328, 822–857 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dai, W., Qin, G.: Liouville theorems for poly-hamonic functions on \({\mathbb{R}}^{n}_{+}\). Arch. Math. (2020). https://doi.org/10.1007/s00013-020-01464-1

    Article  Google Scholar 

  46. Dai, W., Qin, G., Wu, D.: Direct methods for pseudo-relativistic Schrödinger operators. J. Geom. Anal. (2020). https://doi.org/10.1007/s12220-020-00492-1

    Article  Google Scholar 

  47. Dipierro, S., Soave, N., Valdinoci, E.: On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results. Math. Ann. 369, 1283–1326 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  49. Esteban, M.J., Lions, P.-L.: Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. R. Soc. Edinb. A Math. 93(1–2), 1–14 (1982/1983)

  50. Fall, M.M.: Entire \(s\)-harmonic functions are affine. Proc. Am. Math. Soc. 144, 2587–2592 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69(9), 1671–1726 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Felmer, P., Wang, Y.: Radial symmetry of positive solutions to equations involving the fractional Laplacian. Commun. Contemp. Math. 16(1), 1350023 (2014). 24 pp

    Article  MathSciNet  MATH  Google Scholar 

  53. Guan, P.: \(C^2\) a priori estimates for degenerate Monge–Ampère equations. Duke Math. J. 86(2), 323–346 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  55. Guan, P., Trudinger, N., Wang, X.: On the Dirichlet problem for degenerate Monge–Ampère equations. Acta Math. 182(1), 87–104 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Jian, H., Wang, X.: Existence of entire solutions to the Monge–Ampère equation. Am. J. Math. 136(4), 1093–1106 (2014)

    Article  MATH  Google Scholar 

  57. Krylov, N.V.: Controlled Diffusion Processes, Applications of Mathematics, vol. 14. Springer, New York (1980)

    Book  Google Scholar 

  58. Li, C.: Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains. Commun. PDEs 16, 491–526 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  59. Li, C.: Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains. Commun. PDEs 16, 585–615 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  60. Li, C.: Local asymptotic symmetry of singular solutions to nonlinear elliptic equations. Invent. Math. 123(2), 221–231 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lin, C.S.: A classification of solutions of a conformally invariant fourth order equation in \(\mathbb{R}^{n}\). Comment. Math. Helv. 73, 206–231 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lions, P.-L.: Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. II. Viscosity solutions and uniqueness. Commun. Partial Differ. Equ. 8(11), 1229–1276 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  63. Liu, Z., Dai, W.: A Liouville type theorem for poly-harmonic system with Dirichlet boundary conditions in a half space. Adv. Nonlinear Stud. 15, 117–134 (2015)

    MathSciNet  MATH  Google Scholar 

  64. Ros-Oton, X., Serra, J.: Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165(11), 2079–2154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  66. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  67. Trudinger, N., Wang, X.: Boundary regularity for the Monge–Ampère and affine maximal surface equations. Ann. Math. 167(3), 993–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  69. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

  70. Zhang, Z., Wang, K.: Existence and non-existence of solutions for a class of Monge–Ampère equations. J. Differ. Equ. 246, 2849–2875 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading and valuable comments and suggestions that improved the presentation of the paper.

Funding

Wei Dai is supported by the NNSF of China (No. 11971049) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolin Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Qin, G. Maximum principles and the method of moving planes for the uniformly elliptic nonlocal Bellman operator and applications. Annali di Matematica 200, 1085–1134 (2021). https://doi.org/10.1007/s10231-020-01027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-01027-9

Keywords

Mathematics Subject Classification

Navigation