Issue 36, 2020

A facile and efficient approach for hypertrophic scar therapy via DNA-based transdermal drug delivery

Abstract

The transdermal drug delivery approach has been considered a potential therapy for human hypertrophic scars (HSs) instead of current uncomfortable surgical excision, local injection and laser therapy. However, a facile and efficient drug delivery method is urgently needed to overcome the skin barrier of transdermal administration. Herein, we employed a DNA-Fe nanoparticle delivery system via Fe ion driven self-assembly to satisfy the requirement of transdermal administration for HS therapy. Doxorubicin hydrochloride (DOX) as one of the widely used anticancer drugs was employed to treat the hyperplasia of abnormal skin fibrous tissue. Both in vitro and in vivo experiments of the DOX loaded DNA-Fe nanoparticles (DOX@DNA-Fe NPs) were performed to demonstrate the penetration ability, rapid drug release, and scar-inhibiting effects. This facile and efficient approach for HS therapy via a DNA-based transdermal drug delivery system may provide more possibilities for the development of transdermal administration.

Graphical abstract: A facile and efficient approach for hypertrophic scar therapy via DNA-based transdermal drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2020
Accepted
07 Aug 2020
First published
10 Aug 2020

Nanoscale, 2020,12, 18682-18691

A facile and efficient approach for hypertrophic scar therapy via DNA-based transdermal drug delivery

K. Jiang, Y. Chen, D. Zhao, J. Cheng, F. Mo, B. Ji, C. Gao, C. Zhang and J. Song, Nanoscale, 2020, 12, 18682 DOI: 10.1039/D0NR04751A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements