Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-17T07:24:40.528Z Has data issue: false hasContentIssue false

Dynamic interactions of ingested molten silicate particles with air plasma sprayed thermal barrier coatings

Published online by Cambridge University Press:  10 August 2020

Edward J. Gildersleeve V*
Affiliation:
Center for Thermal Spray Research, Stony Brook University, Stony Brook, New York11794-2275, USA
Sanjay Sampath
Affiliation:
Center for Thermal Spray Research, Stony Brook University, Stony Brook, New York11794-2275, USA
*
a)Address all correspondence to this author. e-mail: edward.gildersleeve@stonybrook.edu
Get access

Abstract

Air plasma sprayed thermal barrier coatings (TBCs) are used extensively throughout the gas turbine industry for both power and propulsion. As these engines push to higher temperatures, concern for failure from the melt infiltration of ingested siliceous debris [commonly called calcium–magnesium–alumino-silicate (CMAS)] arises, especially in aeroengines. 7 wt% yttria-stabilized zirconia is particularly prone to melt infiltration and stiffening-induced premature failure. Novel TBC materials such as gadolinium zirconate have been introduced for their infiltration-inhibiting CMAS reactions. Past academic work has utilized ideal laboratory furnace environments to study these phenomena. In this work, the influence of TBC microstructure and chemistry on impinging molten CMAS injected via a burner rig is studied. An observational study of the impacted surfaces and location-specific cross-sectional analysis is reported. Results point toward the critical role of surface microstructure on the mobility and reactivity of the molten CMAS.

Type
Invited Paper
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clarke, D.R., Oechsner, M., and Padture, N.P.: Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 37(10), 891 (2012).CrossRefGoogle Scholar
Padture, N.P.: Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15(8), 804 (2016).CrossRefGoogle ScholarPubMed
Padture, N.P., Gell, M., and Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296(5566), 280 (2002).CrossRefGoogle ScholarPubMed
Stecura, S.: Two-layer thermal barrier coating for turbine airfoils-furnace and burner rig test results. NASA Technical Report, 21 (1976).Google Scholar
Miller, R.A.: Thermal barrier coatings for aircraft engines: History and directions. J. Therm. Spray Technol. 6(1), 35 (1997).CrossRefGoogle Scholar
Sampath, S., Schulz, U., Jarligo, M.O., and Kuroda, S.: Processing science of advanced thermal-barrier systems. MRS Bull. 37(10), 903 (2012).CrossRefGoogle Scholar
Evans, A.G., Clarke, D.R., and Levi, C.G.: The influence of oxides on the performance of advanced gas turbines. J. Eur. Ceram. Soc. 28(7), 1405 (2008).CrossRefGoogle Scholar
Sampath, S. and Herman, H.: Rapid solidification and microstructure development during plasma spray deposition. J. Therm. Spray Technol. 5(4), 445 (1996).CrossRefGoogle Scholar
Zhang, H., Wang, X.Y., Zheng, L.L., and Jiang, X.Y.: Studies of splat morphology and rapid solidification during thermal spraying. Int. J. Heat Mass Transf. 44(24), 4579 (2001).CrossRefGoogle Scholar
Herman, H., Sampath, S., and McCune, R.: Thermal spray: Current status and future trends. MRS Bull. 25(07), 17 (2000).CrossRefGoogle Scholar
Stecura, S.: Effects of compositional changes on the performance of a thermal barrier coating system. [yttria-stabilized zirconia coatings on gas turbine engine blades] .In 3rd Ann. Conf. on Composite and Advanced Materials (NASA Techncial Reports, Merritt Island, FL, 1978), p. 32.Google Scholar
Stecura, S.: Optimization of the NiCrAl-Y/ZrO-Y2O3 thermal barrier system .In 87th Ann. Meeting of the American Ceramic Society (NASA Technical Report, Cincinnati, OH, 1985), p. 23.Google Scholar
Krogstad, J.A., Krämer, S., Lipkin, D.M., Johnson, C.A., Mitchell, D.R.G., Cairney, J.M., and Levi, C.G.: Phase stability of t′-zirconia-based thermal barrier coatings: Mechanistic insights. J. Am. Ceram. Soc. 94(s1), s168 (2011).CrossRefGoogle Scholar
Witz, G., Shklover, V., Steurer, W., Bachegowda, S., and Bossmann, H.-P.: Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by rietveld refinement of X-ray powder diffraction patterns. J. Am. Ceram. Soc. 90(9), 2935 (2007).CrossRefGoogle Scholar
Loganathan, A. and Gandhi, A.S.: Effect of phase transformations on the fracture toughness of t′ yttria stabilized zirconia. Mater. Sci. Eng. A 556, 927 (2012).CrossRefGoogle Scholar
Miller, R.A., Smialek, J.L., and Garlick, R.G.: Phase stability in plasma-sprayed, partially stabilized zirconia-yttria. In The First International Conference on the Science and Technology of Zirconia, Smith, G., ed. (1 (The American Ceramic Society, Inc., Columbus, OH, 1981); p. 241.Google Scholar
Borom, M.P., Johnson, C.A., and Peluso, L.A.: Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 86–87, 116 (1996).CrossRefGoogle Scholar
Webley, P. and Mastin, L.: Improved prediction and tracking of volcanic ash clouds. J. Volcanol. Geotherm. Res. 186(1), 1 (2009).CrossRefGoogle Scholar
Kim, J., Dunn, M.G., Baran, A.J., Wade, D.P., and Tremba, E.L.: Deposition of volcanic materials in the hot sections of two gas turbine engines. J. Eng. Gas Turb. Power 115(3), 641 (1993).CrossRefGoogle Scholar
Smialek, J.L., Archer, F.A., and Garlick, R.G.: Turbine airfoil degradation in the Persian Gulf War. JOM 46(12), 39 (1994).CrossRefGoogle Scholar
Krämer, S., Faulhaber, S., Chambers, M., Clarke, D.R., Levi, C.G., Hutchinson, J.W., and Evans, A.G.: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Mater. Sci. Eng. A 490(1), 26 (2008).CrossRefGoogle Scholar
Jackson, R.W., Zaleski, E.M., Poerschke, D.L., Hazel, B.T., Begley, M.R., and Levi, C.G.: Interaction of molten silicates with thermal barrier coatings under temperature gradients. Acta Mater. 89, 396 (2015).CrossRefGoogle Scholar
Steinke, T., Sebold, D., Mack, D.E., Vaßen, R., and Stöver, D.: A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions. Surf. Coat. Technol. 205(7), 2287 (2010).CrossRefGoogle Scholar
Mack, D.E., Wobst, T., Jarligo, M.O.D., Sebold, D., and Vaßen, R.: Lifetime and failure modes of plasma sprayed thermal barrier coatings in thermal gradient rig tests with simultaneous CMAS injection. Surf. Coat. Technol. 324, 36 (2017).CrossRefGoogle Scholar
Mack, D.E., Laquai, R., Müller, B., Helle, O., Sebold, D., Vaßen, R., and Bruno, G.: Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig testing. J. Am. Ceram. Soc. 102(10), 6163 (2019).CrossRefGoogle Scholar
Poerschke, D.L., Barth, T.L., and Levi, C.G.: Equilibrium relationships between thermal barrier oxides and silicate melts. Acta Mater. 120, 302 (2016).CrossRefGoogle Scholar
Stott, F.H., de Wet, D.J., and Taylor, R.: Degradation of thermal-barrier coatings at very high temperatures. MRS Bull. 19(10), 46 (1994).CrossRefGoogle Scholar
Krause, A.R., Garces, H.F., Dwivedi, G., Ortiz, A.L., Sampath, S., and Padture, N.P.: Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Mater. 105, 355 (2016).CrossRefGoogle Scholar
Liu, Y., Nakamura, T., Dwivedi, G., Valarezo, A., and Sampath, S.: Anelastic behavior of plasma-sprayed zirconia coatings. J. Am. Ceram. Soc. 91(12), 4036 (2008).CrossRefGoogle Scholar
Dwivedi, G., Nakamura, T., and Sampath, S.: Controlled introduction of anelasticity in plasma-sprayed ceramics. J. Am. Ceram. Soc. 94(s1), s104 (2011).CrossRefGoogle Scholar
Levi, C.G., Hutchinson, J.W., Vidal-Sétif, M.-H., and Johnson, C.A.: Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 37(10), 932 (2012).CrossRefGoogle Scholar
Poerschke, D.L., Jackson, R.W., and Levi, C.G.: Silicate deposit degradation of engineered coatings in gas turbines: Progress toward models and materials solutions. Annu. Rev. Mater. Res. 47(1), 297 (2017).CrossRefGoogle Scholar
Evans, A.G. and Hutchinson, J.W.: The mechanics of coating delamination in thermal gradients. Surf. Coat. Technol. 201(18), 7905 (2007).CrossRefGoogle Scholar
Poerschke, D.L. and Levi, C.G.: Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS. J. Eur. Ceram. Soc. 35(2), 681 (2015).CrossRefGoogle Scholar
Krämer, S., Yang, J., and Levi, C.G.: Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. J. Am. Ceram. Soc. 91(2), 576 (2008).CrossRefGoogle Scholar
Drexler, J.M., Chen, C.-H., Gledhill, A.D., Shinoda, K., Sampath, S., and Padture, N.P.: Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca–Mg–Al–silicate glass. Surf. Coat. Technol. 206(19), 3911 (2012).CrossRefGoogle Scholar
Gledhill, A.D., Reddy, K.M., Drexler, J.M., Shinoda, K., Sampath, S., and Padture, N.P.: Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings. Mater. Sci. Eng. A 528(24), 7214 (2011).CrossRefGoogle Scholar
Gildersleeve V, E.J., Viswanathan, V., and Sampath, S.: Molten silicate interactions with plasma sprayed thermal barrier coatings: Role of materials and microstructure. J. Eur. Ceram. Soc. 39(6), 2122 (2019).CrossRefGoogle Scholar
Ghoshal, A., Murugan, M., Walock, M.J., Nieto, A., Barnett, B.D., Pepi, M.S., Swab, J.J., Zhu, D., Kerner, K.A., Rowe, C.R., Shiao, C.-Y., Hopkins, D.A., and Gazonas, G.A.: Molten particulate impact on tailored thermal barrier coatings for gas turbine engine. J. Eng. Gas Turb. Power 140(2) (2017).Google Scholar
Ghoshal, A., Murugan, M., Barnett, B., Walock, M., Pepi, M., and Kerner, K.: Turbomachinery blade thermomechanical interface science and sandphobic coatings research. In 71st AHS International Forum (2015).Google Scholar
Ghoshal, A., Walock, M.J., Murugan, M., Mock, C., Bravo, L., Pepi, M., Nieto, A., Wright, A., Luo, J., Jain, N., Flatau, A., and Fehrenbacher, L.: Governing Parameters Influencing CMAS Adhesion and Infiltration Into Environmental/Thermal Barrier Coatings in Gas Turbine Engines .In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition (Phoenix, AZ, 2019).Google Scholar
Zhang, B., Song, W., Wei, L., Xiu, Y., Xu, H., Dingwell, D.B., and Guo, H.: Novel thermal barrier coatings repel and resist molten silicate deposits. Scr. Mater. 163, 71 (2019).CrossRefGoogle Scholar
Lokachari, S., Song, W., Yang, S., and Bruce Dingwell, D.: Novel thermal barrier coatings resistant to molten volcanic ash wetting. In Thermal Barrier Coatings V (2018).CrossRefGoogle Scholar
Chidambaram Seshadri, R., Dwivedi, G., Viswanathan, V., and Sampath, S.: Characterizing suspension plasma spray coating formation dynamics through curvature measurements. J. Therm. Spray Technol. 25(8), 1666 (2016).CrossRefGoogle Scholar
Vaßen, R., Kaßner, H., Mauer, G., and Stöver, D.: Suspension plasma spraying: Process characteristics and applications. J. Therm. Spray Technol. 19(1–2), 219 (2010).CrossRefGoogle Scholar
Kassner, H., Siegert, R., Hathiramani, D., Vassen, R., and Stoever, D.: Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings. J. Therm. Spray Technol. 17(1), 115 (2008).CrossRefGoogle Scholar
Govindarajan, S., Dusane, R.O., and Joshi, S.V.: In situ particle generation and splat formation during solution precursor plasma spraying of yttria-stabilized zirconia coatings. J. Am. Ceram. Soc. 94(12), 4191 (2011).CrossRefGoogle Scholar
Viswanathan, V., Dwivedi, G., and Sampath, S.: Multilayer, multimaterial thermal barrier coating systems: Design, synthesis, and performance assessment. J. Am. Ceram. Soc. 98(6), 1769 (2015).CrossRefGoogle Scholar
Johnson, A., Catalan, L.J.J., and Kinrade, S.D.: Characterization and evaluation of fly-ash from co-combustion of lignite and wood pellets for use as cement admixture. Fuel 89(10), 3042 (2010).CrossRefGoogle Scholar
Ilic, M., Cheeseman, C., Sollars, C., and Knight, J.: Mineralogy and microstructure of sintered lignite coal fly ash. Fuel 82(3), 331 (2003).CrossRefGoogle Scholar
Sampath, S. and Jiang, X.: Splat formation and microstructure development during plasma spraying: Deposition temperature effects. Mater. Sci. Eng. A 304–306, 144 (2001).CrossRefGoogle Scholar
Finn, R.: Capillary surface interfaces. Notices AMS 46(7), 770 (1999).Google Scholar
Extrand, C.W. and Moon, S.I.: Intrusion pressure to initiate flow through pores between spheres. Langmuir 28(7), 3503 (2012).CrossRefGoogle ScholarPubMed
Kramer, S., Yang, J., Levi, C.G., and Johnson, C.A.: Thermochemical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits. J. Am. Ceram. Soc. 89(10), 3167 (2006).CrossRefGoogle Scholar
Naraparaju, R., Hüttermann, M., Schulz, U., and Mechnich, P.: Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings. J. Eur. Ceram. Soc. 37(1), 261 (2017).CrossRefGoogle Scholar
Wu, J., Guo, H.-b., Gao, Y.-z., and Gong, S.-k.: Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. J. Eur. Ceram. Soc. 31(10), 1881 (2011).CrossRefGoogle Scholar
Aygun, A., Vasiliev, A.L., Padture, N.P., and Ma, X.: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 55(20), 6734 (2007).CrossRefGoogle Scholar
von Lucas, R.: Ueber das Zeitgesetz des kapillaren Aufstiegs yon Flüssigkeiten. Kolloid-Zeitschrift 23(1), 15 (1918).CrossRefGoogle Scholar
Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273 (1921).CrossRefGoogle Scholar
Krause, A.R., Li, X., and Padture, N.P.: Interaction between ceramic powder and molten calcia-magnesia-alumino-silicate (CMAS) glass, and its implication on CMAS-resistant thermal barrier coatings. Scr. Mater. 112, 118 (2016).CrossRefGoogle Scholar
Kulkarni, A., Wang, Z., Nakamura, T., Sampath, S., Goland, A., Herman, H., Allen, J., Ilavsky, J., Long, G., Frahm, J., and Steinbrech, R.W.: Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings. Scr. Mater. 51(9), 2457 (2003).Google Scholar
Shinde, S.V., Gildersleeve V, E.J., Johnson, C.A., and Sampath, S.: Segmentation crack formation dynamics during air plasma spraying of zirconia. Scr. Mater. 183, 196 (2020).Google Scholar
Guo, H.B., Vaßen, R., and Stöver, D.: Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density. Surf. Coat. Technol. 186(3), 353 (2004).CrossRefGoogle Scholar
Karger, M., Vaßen, R., and Stöver, D.: Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: Spraying process, microstructure and thermal cycling behavior. Surf. Coat. Technol. 206(1), 16 (2011).CrossRefGoogle Scholar
Gildersleeve V, E.J., Viswanathan, V., Lance, M.J., Haynes, J.A., Pint, B.A., and Sampath, S.: Role of bond coat processing methods on the durability of plasma sprayed thermal barrier systems. Surf. Coat. Technol. 375, 782 (2019).CrossRefGoogle Scholar