Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 10, 2020

Synthesis of Ag@PANI nanocomposites by complexation method and their application as label-free chemo-probe for detection of mercury ions

  • Lovepreet Singh ORCID logo EMAIL logo and Vishal Singh

Abstract

A novel optical probe consistinsg of Ag@PANI (silver-polyaniline) nanocomposites was developed for detection of mercury ions (Hg2+). The poly-dispersed Ag@PANI nanocomposites were synthesized by complexation reaction method. We studied structural and functional properties of polymer nanocomposites thoroughly. Ag@PANI nanocomposites consist of fibrous morphology with a mean particle size of 31.39 nm. Ag@PANI nanocomposites consist of face-centered cubic crystal structure with an average crystallite size of 19.41 nm. Raman spectroscopy was used in sensitive and selective detection of Hg2+ ions in dynamic range of 0.01–0.1 ppm with limit of detection of 0.019 ppm. Ag@PANI nanocomposite sensor for Hg (II) ions has shown some sublime results in pH range 3–5. Ag@PANI-based sensing probe can be beneficial for Hg2+ ions detection in highly sensitive biological, chemical and environmental analysis. Our sensing probe has shown good reproducibility, and all recorded observations revealed that sensing probe consisting of Ag@PANI nanocomposites is well suited for detection of Hg2+ ions.


Corresponding author: Lovepreet Singh, Department of Materials Science and Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, 177005, India, E-mail:

Acknowledgments

The authors would like to acknowledge Prof. (Dr.) Vinod Yadava (Director, National Institute of Technology, Hamirpur, India) for his constant support.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Winey, K. I., Richard, A. Vaia. MRS Bull. 2007, 32, 314–322; https://doi.org/10.1557/mrs2007.229.10.1557/mrs2007.229Search in Google Scholar

2. Armstrong, G. Eur. J. Phys. 2015, 36, 063001; https://doi.org/10.1088/0143-0807/36/6/063001.10.1088/0143-0807/36/6/063001Search in Google Scholar

3. Chang, J. Y., Godovsky, D. Y., Han, M. J., Hassan, C. M., Kim, J., Lee, B., Lee, Y., Peppas, N. A., Quirk, R. P., Yoo, T. Biopolymers PVA hydrogels, anionic polymerisation nanocomposites. Springer, Berlin, Heidelberg, 2000; pp. 163–205.10.1007/3-540-46414-X_4Search in Google Scholar

4. Hule, R. A, Darrin, J. P. MRS Bull. 2007, 32, 354–358; https://doi.org/10.1557/mrs2007.235.10.1557/mrs2007.235Search in Google Scholar

5. Njuguna, J., Krzysztof, P. Adv. Eng. Mater. 2003, 5, 769–778; https://doi.org/10.1002/adem.200310101.10.1002/adem.200310101Search in Google Scholar

6. Youssef, A. M. Polym. Plastics Technol. Eng. 2013, 52, 635–660; https://doi.org/10.1080/03602559.2012.762673.10.1080/03602559.2012.762673Search in Google Scholar

7. Huang, J. Pure Appl. Chem. 2006, 78, 15–27; https://doi.org/10.1351/pac200678010015.10.1351/pac200678010015Search in Google Scholar

8. Buschle, W. Diss. University of Cincinnati: Cincinnati, Ohio, USA, 2011.Search in Google Scholar

9. Chandrasekhar, P. Conducting polymers, fundamentals and applications: a practical approach. Springer Science & Business Media: Marlboro, USA, 2013.Search in Google Scholar

10. Huang, J., Virji, S., Weiller, B. H., Kaner, R. B. Chem. A Eur. J. 2004, 10, 1314–1319; https://doi.org/10.1002/chem.200305211.10.1002/chem.200305211Search in Google Scholar PubMed

11. Zhiwei, L., Wanlin, D., Baichen, L., Guangquan, M., Junjun, Z., Jiaping, Y., Jianshan, Y. J. Colloid Interface Sci. 2018, 525, 86–96. https://doi.org/10.1016/j.jcis.2018.04.065.Search in Google Scholar PubMed

12. Anil, D., Brian, E. C., Jingshu, G., Bokwon, Y., Robert, N. B., Bradley, M. M., Kristin, K., Wendell, P. G., Robert, L. W., Uzi, L., Terry, P. B. Nature 2013, 501, 399. https://doi.org/10.1038/nature12523.Search in Google Scholar PubMed

13. Evanoff, D. D.Jr., George, C. ChemPhysChem 2005, 6, 1221–1231; https://doi.org/10.1002/cphc.200500113.10.1002/cphc.200500113Search in Google Scholar

14. Zhang, L., Ming, H. W. Environ. Int. 2007, 33, 108–121; https://doi.org/10.1016/j.envint.2006.06.022.10.1016/j.envint.2006.06.022Search in Google Scholar

15. Schroeder, W. H., Munthe, J. Atmos. Environ. 1998, 32, 809–822. https://doi.org/10.1016/S1352-2310(97)00293-8.Search in Google Scholar

16. Wang, Q., Kima, D., Dionysiou, D. D., Sorial, G. A., Timberlake, D. Environ. Poll. 2004, 131, 323–336; https://doi.org/10.1016/j.envpol.2004.01.010.10.1016/j.envpol.2004.01.010Search in Google Scholar PubMed

17. Kumar, M., Avinash, P. Indian J. Occup. Environ. Med. 2012, 16, 40; https://doi.org/10.4103/0019-5278.111767.10.4103/0019-5278.99696Search in Google Scholar PubMed PubMed Central

18. Kudo, A., Shojiro, M. Water Sci. Technol. 1991, 23, 283–290; https://doi.org/10.2166/wst.1991.0426.10.2166/wst.1991.0426Search in Google Scholar

19. Ramesh, G. V., Radhakrishnan, T. P. ACS Appl. Mater. Interfaces 2011, 3, 988–994; https://doi.org/10.1021/am200023w.10.1021/am200023wSearch in Google Scholar PubMed

20. Wang, X., Shen, Y., Xie, A., Chen, S. Mater. Chem. Phys. 2013, 140, 487–492; https://doi.org/10.1016/j.matchemphys.2013.03.058.10.1016/j.matchemphys.2013.03.058Search in Google Scholar

21. Verma, R., Gupta, B. D. Food Chem. 2015, 568–575; https://doi.org/10.1016/j.foodchem.2014.06.045.10.1016/j.foodchem.2014.06.045Search in Google Scholar PubMed

22. Muthivhi, R., Parani, S., May, B., Oluwafemi, O. S. Nano Struct. Nano Obj. 2018, 13, 132–138; https://doi.org/10.1016/j.nanoso.2017.12.008.10.1016/j.nanoso.2017.12.008Search in Google Scholar

23. Viswanathan, P., Muralidaran, Y., Ragavan, G. In Nanostructures for oral medicine. Elsevier, 2017; pp. 173–201.10.1016/B978-0-323-47720-8.00008-0Search in Google Scholar

24. Bhowmick, B., Mondal, D., Maity, D., Rahaman Mollick, M. M., Kanti Bain, M., Kumar Bera, N., Rana, D., Chattopadhyay, S., Chattopadhyay, D. J. Appl. Polym. Sci. 2013, 129, 3551–3557; https://doi.org/10.1002/app.39124.10.1002/app.39124Search in Google Scholar

25. Poyraz, S., Cerkez, I., Huang, T. S., Liu, Z., Kang, L., Luo, J., Zhang, X. ACS Appl. Mater. Interfaces 2014, 6, 20025–20034; https://doi.org/10.1021/am505571m.10.1021/am505571mSearch in Google Scholar

26. Massoumi, B., Fathalipour, S., Massoudi, A., Hassanzadeh, M., Entezami, A. A. J. Appl. Polym. Sci. 2013, 130, 2780–2789; https://doi.org/10.1002/app.39448.10.1002/app.39448Search in Google Scholar

27. Sridevi, V., Malathi, S., Devi, C. S. Chem. Sci. J. 2011, 26, 1–6.Search in Google Scholar

28. Zeng, X. R., Ko, T. M. Polymer 1998, 39, 1187–1195; https://doi.org/10.1016/s0032-3861(97)00381-9.10.1016/S0032-3861(97)00381-9Search in Google Scholar

29. Fathalipour, S., Ahunbar, S. Polym. Sci. B 2019, 61, 663–669. https://doi.org/10.1134/S1560090419050038.Search in Google Scholar

30. Bogdanovic, U., Pasti, I., Ciric-Marjanovic, G., Mitric, M., Ahrenkiel, S. P., Vodnik, V. ACS Appl Mater. Interfaces 2015, 7, 28393–28403. https://doi.org/10.1021/acsami.5b09145.Search in Google Scholar PubMed

31. Jancy, M. E., Inbathamizh, L. Asian J. Pharmaceut. Clin. Res. 2012, 5, 159–162.Search in Google Scholar

32. Anandalakshmi, K., Venugobal, J., Ramasamy, V. Appl. Nanosci. 2016, 6, 399–408; https://doi.org/10.1007/s13204-015-0449-z.10.1007/s13204-015-0449-zSearch in Google Scholar

33. Monshi, A., Foroughi, M. R., Monshi, M. R. World J. Nano Sci. Eng. 2012, 2, 154–160; https://doi.org/10.4236/wjnse.2012.23020.10.4236/wjnse.2012.23020Search in Google Scholar

34. Wei, X. L., Fahlman, M., Epstein, A. J. Macromolecules 1999, 32, 3114–3117; https://doi.org/10.1021/ma981386p.10.1021/ma981386pSearch in Google Scholar

35. Wang, X., Shen, Y., Xie, A., Li, S., Cai, Y., Wang, Y., Shu, H. Biosens. Bioelectron. 2011, 26, 3063–3067; https://doi.org/10.1016/j.bios.2010.11.044.10.1016/j.bios.2010.11.044Search in Google Scholar

36. Wang, S., Rogachev, А. А., Yarmolenko, M. А., Rogachev, А. V., Xiaohong, J., Gaur, M. S., Luchnikov, P. A., Galtseva, O. V., Chizhik, S. A. Appl. Surf. Sci. 2018, 428, 1070–1078; https://doi.org/10.1016/j.apsusc.2017.09.225.10.1016/j.apsusc.2017.09.225Search in Google Scholar

37. Sen, T., Mishra, S., Shimpi, N. G. RSC Adv. 2016, 6, 42196–42222; https://doi.org/10.1039/c6ra03049a.10.1039/C6RA03049ASearch in Google Scholar

38. Ran, F., Tan, Y., Dong, W., Liu, Z., Kong, L., Kang, L. Polym. Adv. Technol. 2018, 29, 1697–705; https://doi.org/10.1002/pat.4273.10.1002/pat.4273Search in Google Scholar

39. Tamboli, M. S., Kulkarni, M. V., Patil, R. H., Gade, W. N., Navale, S. C., Kale, B. B. Colloids Surf. B Biointerfaces 2012, 92, 35–41; https://doi.org/10.1016/j.colsurfb.2011.11.006.10.1016/j.colsurfb.2011.11.006Search in Google Scholar

40. Khan, M. J., Husain, Q., Ansari, S. A. Appl. Microbiol. Biotechnol. 2013, 97, 1513–1522; https://doi.org/10.1007/s00253-012-4384-6.10.1007/s00253-012-4384-6Search in Google Scholar

41. Do Nascimento, G. M., Temperini, M. R. Int. J. Original Work Aspects Raman Spectrosc. Includ. High. Order Process. Brillouin Rayleigh Scatter. 2008, 39, 772–778; https://doi.org/10.1002/jrs.1841.10.1002/jrs.1841Search in Google Scholar

42. Bernard, C. M., Le Goff, A. H. Synth. Met. 1997, 85, 1145–1146; https://doi.org/10.1016/s0379-6779(97)80187-7.10.1016/S0379-6779(97)80187-7Search in Google Scholar

43. Rohom, A. B., Londhe, P. U., Mahapatra, S. K., Kulkarni, S. K., Chaure, N. B. High Perform. Polym. 2014, 26, 641–646; https://doi.org/10.1177/0954008314538081.10.1177/0954008314538081Search in Google Scholar

44. Darbha, G. K., Singh, A. K., Rai, U. S., Yu, E., Yu, H., Chandra Ray, P. J. Am. Chem. Soc. 2008, 130, 8038–8043; https://doi.org/10.1021/ja801412b.10.1021/ja801412bSearch in Google Scholar PubMed PubMed Central

45. Yu, H., Li, J., Luan, Y. Sci. Rep. 2018, 8, 1–10; https://doi.org/10.1038/s41598-018-19519-3.10.1038/s41598-018-19519-3Search in Google Scholar PubMed PubMed Central

46. Mathew, M., Sureshkumar, S., Sandhyarani, N. Colloids Surf. B Biointerfaces 2012, 93, 143–147; https://doi.org/10.1016/j.colsurfb.2011.12.028.10.1016/j.colsurfb.2011.12.028Search in Google Scholar PubMed

47. Ruecha, N., Rodthongkum, N., Cate, D. M., Volckens, J., Chailapakul, O., Henry, C. S. Anal. Chim. Acta 2015, 874, 40–48; https://doi.org/10.1016/j.aca.2015.02.064.10.1016/j.aca.2015.02.064Search in Google Scholar PubMed

48. Yang, Y., Kang, M., Fang, S., Wang, M., He, L., Zhao, J., Zhang, H., Zhang, Z. Sensor. Actuator. B Chem. 2015, 214, 63–69; https://doi.org/10.1016/j.snb.2015.02.127.10.1016/j.snb.2015.02.127Search in Google Scholar

49. Deshmukh, M. A., Patil, H. K., Bodkhe, G. A., Yasuzawa, M., Koinkar, P., Ramanaviciene, A., Shirsat, M. D., Ramanavicius, A. Sensor. Actuator. B Chem. 2018, 260, 331–338; https://doi.org/10.1016/j.snb.2017.12.160.10.1016/j.snb.2017.12.160Search in Google Scholar

50. Deshmukh, M. A., Patil, H. K., Bodkhe, G. A., Yasuzawa, M., Koinkar, P., Ramanavicius, A., Pandey, S., Shirsat, M. D. Colloid. Surface. Physicochem. Eng. Aspect. 2018, 537, 303–309; https://doi.org/10.1016/j.colsurfa.2017.10.026.10.1016/j.colsurfa.2017.10.026Search in Google Scholar

51. Sadeghi, M. M., Rad, A. S., Ardjmand, M., Mirabi, A. Synth. Met. 2018, 245, 1–9; https://doi.org/10.1016/j.synthmet.2018.08.001.10.1016/j.synthmet.2018.08.001Search in Google Scholar

52. Saikia, A., Karak, N. Mater. Today Commun. 2018, 1, 82–89; https://doi.org/10.1016/j.mtcomm.2017.12.020.10.1016/j.mtcomm.2017.12.020Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material https://doi.org/10.1515/polyeng-2020-0047.


Received: 2020-03-06
Accepted: 2020-07-13
Published Online: 2020-08-10
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2020-0047/html
Scroll to top button