Skip to main content
Log in

Compression-Robust and Fuzzy-Based Feature-Fusion Model for Optimizing the Iris Recognition

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Iris Recognition is gaining popularity in various online and offline authentication and multi-model biometric systems. The non-altering and non-obscuring nature of Iris have increased its reliability in authentication systems. The iris images captured in an uncontrolled environment and situation is the challenging issue of the iris recognition. In this paper, a compression robust and KPCA-Gabor fused model is presented to recognize the iris image accurately under these complexities. The illumination and noise robustness is included in this pre-processing stage for gaining the robustness and reliability against complex capturing. The effective compression features are generated as a phase pre-treatment vector using the Logarithmic quantization method. (Kernel Principal Component Analysis) KPCA and Gabor filters are applied to the rectified image for generating the textural features. The compression is also applied to Gabor and KPCA filtered images. The fuzzy adaptive content level fusion is applied to the compression image, KPCA-Compression, and Gabor-Compression iris-image. (K-Nearest Neighbors) KNN based mapping is used to this composite-fused and reduced feature set to recognize the individual. The proposed compression and fusion-feature based model is applied to CASIA-Iris, UBIRIS, and IITD datasets. The comparative evaluations against earlier approaches identify that the proposed model has improved the recognition accuracy and the reduction in error-rate is also achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Juneja, K. (2017). A noise robust VDD composed PCA-LDA model for face recognition. In International conference on information, communication and computing technology, communications in computer and information science (pp. 216–229). https://doi.org/10.1007/978-981-10-6544-6_21

  2. Juneja, K., & Gill, N. S. (2015). A PCT/PST improved HMM-PCA model for pose robust facial recognition. In International conference on applied and theoretical computing and communication technology, Davangere, 2015 (pp 131–136).

  3. Juneja, K. (2017). Multiple feature descriptors based model for individual identification in group photos. Journal of King Saud University - Computer and Information Sciences, 31(2), 185–207.

    Article  Google Scholar 

  4. Nguyen, K., Fookes, C., Jillela, R., Sridharan, S., & Ross, A. (2017). Long range iris recognition: A survey. Pattern Recognition, 72, 123–143.

    Article  Google Scholar 

  5. De Marsico, M., Petrosino, A., & Ricciardi, S. (2016). Iris recognition through machine learning techniques: A survey. Pattern Recognition Letters, 82, 106–115.

    Article  Google Scholar 

  6. Wildes, R. P. (1997). Iris recognition: An emerging biometric technology. Proceedings of the IEEE, 85(9), 1348–1363.

    Article  Google Scholar 

  7. Daugman, J., & Downing, C. (2008). Effect of severe image compression on iris recognition performance. IEEE Transactions on Information Forensics and Security, 3(1), 52–61.

    Article  Google Scholar 

  8. Paul, A., et al. (2015). Iris image compression using wavelets transform coding. In 2nd international conference on signal processing and integrated networks (SPIN), Noida, 2015 (pp. 544–548).

  9. Karakaya, M. (2016). A study of how gaze angle affects the performance of iris recognition. Pattern Recognition Letters, 82, 132–143.

    Article  Google Scholar 

  10. Hassan, R., Kasim, S., Esa, N. M., & Zakaria, Z. (2017). Comparative study of different window sizes setting in median filter for off-angle iris recognition. International Journal on Advanced Science Engineering and Information Technology, 7, 1638–1643.

    Article  Google Scholar 

  11. Hofbauer, H., Alonso-Fernandez, F., Bigun, J., & Uhl, A. (2016). Experimental analysis regarding the influence of iris segmentation on the recognition rate. IET Biometrics, 5(3), 200–211.

    Article  Google Scholar 

  12. Chen, J., Shen, F., Chen, D. Z., & Flynn, P. J. (2016). Iris recognition based on human-interpretable features. IEEE Transactions on Information Forensics and Security, 11(7), 1476–1485.

    Article  Google Scholar 

  13. Juneja, K. (2015). Multi-featured and conditional probability analysis model for driving-disability identification. In 3rd international conference on image information processing, 2015 (pp. 480–485).

  14. Bergmüller, T., Christopoulos, E., Fehrenbach, K., Schnöll, M., & Uhl, A. (2017). Recompression effects in iris recognition. Image and Vision Computing, 58, 142–157.

    Article  Google Scholar 

  15. Pavaloi, I., & Ignat, A. (2017). Iris recognition using statistics on pixel position. In E-Health and bioengineering conference (EHB) (pp. 422–425).

  16. Kaur, B., Singh, S., & Kumar, J. (2018). Iris recognition using zernike moments and polar harmonic transforms. Arabian Journal for Science and Engineering, 43(12), 7209–7218.

    Article  Google Scholar 

  17. Sahu, B., Sa, P. K., Bakshi, S., & Sangaiah, A. K. (2018). Reducing dense local feature key-points for faster iris recognition. Computers & Electrical Engineering, 70, 939–949.

    Article  Google Scholar 

  18. Kaur, B., Singh, S., & Kumar, J. (2018). Robust iris recognition using moment invariants. Wireless Personal Communications, 99(2), 799–828.

    Article  Google Scholar 

  19. Gupta, R., & Gupta, K. (2014). Iris recognition using templates fusion with weighted majority voting. International Journal of Image and Data Fusion, 2014, 1–16.

    Google Scholar 

  20. Naseem, I., Aleem, A., Togneri, R., & Bennamoun, M. (2017). Iris recognition using class-specific dictionaries. Computers & Electrical Engineering, 62, 178–193.

    Article  Google Scholar 

  21. Suvarchala, P. V. L., & Srinivas Kumar, S. (2018). Texture synthesis and modified filter bank in contourlets for improved iris recognition. Pattern Analysis and Applications, 21(4), 1127–1138.

    Article  MathSciNet  Google Scholar 

  22. Alvarez-Betancourt, Y., & Garcia-Silvente, M. (2016). A keypoints-based feature extraction method for iris recognition under variable image quality conditions. Knowledge-Based Systems, 92, 169–182.

    Article  Google Scholar 

  23. Umer, S., Dhara, B. C., & Chanda, B. (2015). Iris recognition using multi-scale morphologic features. Pattern Recognition Letters, 65, 67–74.

    Article  Google Scholar 

  24. Tan, C.-W., & Kumar, A. (2014). Efficient and accurate at-a-distance iris recognition using geometric key-based iris encoding. IEEE Transactions on Information Forensics and Security, 9(9), 1518–1526.

    Article  Google Scholar 

  25. G Charan. (2016). Iris Recognition using feature optimization. In 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Bangalore, pp. 726-731.

  26. Suciati, N., et al. (2016). Feature extraction using statistical moments of wavelet transform for iris recognition. In International conference on information & communication technology and systems (ICTS), Surabaya, 2016 (pp. 193–198).

  27. Alqahtani, A. (2016). Evaluation of the reliability of iris recognition biometric authentication systems. In International conference on computational science and computational intelligence (CSCI), Las Vegas, NV, 2016 (pp. 781–785).

  28. Ali, L. E., Luo, J., & Ma, J. (2016). Iris recognition from distant images based on multiple feature descriptors and classifiers. In 13th international conference on signal processing (ICSP), Chengdu, 2016 (pp. 1357–1362).

  29. Juneja, K., & Gill, N. S. (2015). Tied multi-rubber band model for camera distance, shape and head movement robust facial recognition. In International conference on applied and theoretical computing and communication technology, 2015 (pp. 218–223).

  30. Hamouchene, I., & Aouat, S. (2016). Efficient approach for iris recognition. Signal, Image and Video Processing, 10(7), 1361–1367.

    Article  Google Scholar 

  31. Kaewphaluk, K., & Widjaja, J. (2017). Experimental demonstrations of noise-robustness of compression-based joint wavelet transform correlator in retinal recognition. Optik - International Journal for Light and Electron Optics, 142, 168–173.

    Article  Google Scholar 

  32. Boixl, M., & Cantó, B. (2010). Wavelet transform application to the compression of images. Mathematical and Computer Modelling, 52(7), 1265–1270.

    Article  MathSciNet  MATH  Google Scholar 

  33. Jan, F., Usman, I., & Agha, S. (2012). Iris localization in frontal eye images for less constrained iris recognition systems. Digital Signal Processing, 22(6), 971–986.

    Article  MathSciNet  Google Scholar 

  34. Wild, P., Ferryman, J., & Uhl, A. (2015). Impact of (segmentation) quality on long vs. short-timespan assessments in iris recognition performance. IET Biometrics, 4(4), 227–235.

    Article  Google Scholar 

  35. Soliman, N. F., Mohamed, E., Magdi, F., Abd El-Samie, F. E., & Abd Elnaby, M. (2017). Efficient iris localization and recognition. Optik, 140, 469–475.

    Article  Google Scholar 

  36. Chirchi, V. R. E., & Waghmare, L. M. (2017). Enhanced isocentric segmenter and wavelet rectangular coder to iris segmentation and recognition. International Journal of Intelligent Engineering & Systems, 2017, 1–10.

    Article  Google Scholar 

  37. Chirchi, E. R. M., & Digambar, K. R. (2017). Modified circular fuzzy segmenter and local circular encoder to iris segmentation and recognition. International Journal of Intelligent Engineering & Systems, 10(2), 183–192.

    Google Scholar 

  38. Naguru, I., & Rao, N. K. (2017). Feature matching in iris recognition system using MATLAB. International Journal on Advanced Science Engineering Information Technology, 7(5), 1748–1757.

    Article  Google Scholar 

  39. Hough, P. V. C. (1962). Method and means for recognizing complex patterns. 3,069,654.

  40. Duda, R. O., & Hart, P. E. (1972). Use of the hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1), 11–15.

    Article  MATH  Google Scholar 

  41. Cherabit, N., Chelali, F. Z., & Djeradi, A. (2012). Circular Hough transform for iris localization. Science and Technology, 2(5), 114–121.

    Article  Google Scholar 

  42. Proença, H., & Alexandre, L. A. (2005). UBIRIS: A noisy iris image database. In 13th international conference on image analysis and processing, Italy, 2005 (pp. 970–977).

  43. Dillak, R. Y., & Bintiri, M. G. (2016). A novel approach for iris recognition. In IEEE region 10 symposium (TENSYMP), Bali, 2016 (pp. 231–236).

  44. Masek, L. (2003). Recognition of human iris patterns for biometric identification. Crawley: The School of Computer Science and Software Engineering, The University of Western Australia.

    Google Scholar 

  45. Han, W.-Y., Chen, W.-K., Lee, Y.-P., Wu, K.-S., & Lee, J.-C. (2014). Iris recognition based on local mean decomposition. Applied Mathematics & Information Sciences An International Journal, 8(2), 217–222.

    Article  Google Scholar 

  46. Elgamal, M., & Al-biqami, N. (2013). An efficient feature extraction method for iris recognition based on wavelet transformation. International Journal of Information Technology, 2, 521–527.

    Google Scholar 

  47. Umer, S., Dhara, B. C., & Chanda, B. (2016). Texture code matrix-based multi-instance iris recognition. Pattern Analysis and Applications, 19(1), 283–290.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Juneja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juneja, K., Rana, C. Compression-Robust and Fuzzy-Based Feature-Fusion Model for Optimizing the Iris Recognition. Wireless Pers Commun 116, 267–300 (2021). https://doi.org/10.1007/s11277-020-07714-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07714-3

Keywords

Navigation