Skip to main content
Log in

Comparative proteomic analysis of differentially expressed proteins related to phloem and xylem development in rubber tree (Hevea brasiliensis)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The proteomic analysis of vascular tissues in rubber tree reveals differentially expressed proteins related to laticifer differentiation in mature phloem and secondary cell wall formation in mature xylem for latex/wood-yield improvement.

Abstract

Rubber tree (Hevea brasiliensis) is a latex-producing plant that has worldwide economic importance for the rubber and wood industries. Natural rubber latex is produced from laticiferous vessels (laticifers) located in the secondary phloem tissue of rubber trees. Improving latex production from rubber tree clones by studying the molecular genetics of vascular development has received much attention, but less information has been obtained from proteomic approaches. This study performed a comparative proteomic analysis of the vascular tissues in high latex-yield and high wood-yield rubber tree clones. One primary vascular tissue (newly developed stem) and two secondary vascular tissues (mature phloem/laticifers and mature xylem/wood) were investigated by qualitative/quantitative proteomic analysis using GeLC-MS/MS. The differentially expressed proteins (DEPs) in the specific vascular tissues were analyzed, and the protein functions in the biological processes related to vascular development and to the specific characteristics of each clone were clarified. The predicted protein–protein interaction network and GO annotation revealed DEPs related to photosynthesis, carbohydrate metabolism, energy production and jasmonic acid-responsive proteins involved in positive regulation of laticifer differentiation in mature phloem of the high latex-yield clone, while DEPs related to cell cytoskeleton maintenance, secondary cell wall components and auxin-, brassinosteroid-, abscisic acid-responsive proteins involved in xylem differentiation were abundant in mature xylem of the high wood-yield clone. This is the first report to demonstrate the correlation and functions of DEPs in phloem/laticifers and xylem/wood differentiation in rubber trees. The regulation of vascular development could be useful in improvement of latex and wood yields from rubber trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BR:

Brassinosteroid

DEPs:

Differentially expressed proteins

ET:

Ethylene

GeLC-MS/MS:

One-dimensional sodium dodecyl sulfate–polyacrylamide gel electrophoresis followed by liquid chromatography–tandem mass spectrometry

GO:

Gene ontology

JA:

Jasmonic acid

MeJA:

Methyl jasmonate

MP:

Mature phloem

MX:

Mature xylem

NS:

Newly developed stem

RRIT:

Rubber Research Institute of Thailand

References

  • Alenius H, Kalkkinen N, Lukka M, Reunala T, Turjanmaa K, Mäkinen-Kiljunen S et al. (1995) Prohevein from the rubber tree (Hevea brasiliensis) is a major latex allergen. Clin Exp Allergy 25(7):659–665

    PubMed  CAS  Google Scholar 

  • Ambasht PK, Kayastha AM (2002) Plant pyruvate kinase. Biol Plant 45(1):1–10

    CAS  Google Scholar 

  • Araujo WL, Nunes-Nesi A, Nikoloski Z, Sweetlove LJ, Fernie AR (2012) Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant Cell Environ 35(1):1–21

    PubMed  CAS  Google Scholar 

  • Arreewichit P, Sae-Lim P, Nirapathpongporn K, Viboonjun U, Kongsawadworakul P, Narangajavana J (2019) Opposite physiological effects upon jasmonic acid and brassinosteroid treatment on laticifer proliferation and co-occurrence of differential expression of genes involved in vascular development in rubber tree. Physiol Mol Biol Plant 25(5):1283–1299

    CAS  Google Scholar 

  • Bai Z, Qi T, Liu Y, Wu Z, Ma L, Liu W et al. (2018) Alteration of S-adenosylhomocysteine levels affects lignin biosynthesis in switchgrass. Plant Biotechnol J 16(12):2016–2026

    PubMed  PubMed Central  CAS  Google Scholar 

  • Balaji AB, Pakalapati H, Khalid M, Walvekar R, Siddiqui H (2017) Natural and synthetic biocompatible and biodegradable polymers. Biodegradable and biocompatible polymer composites: processing, properties and applications. Woodhead Publishing series in composites science and engineering. Woodhead Publishing, Duxford, pp 3–32

    Google Scholar 

  • Baroja-Fernández E, Muñoz FJ, Montero M, Etxeberria E, Sesma MT, Ovecka M et al. (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol 50(9):1651–1662

    PubMed  Google Scholar 

  • Braun DM, Wang L, Ruan YL (2013) Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J Exp Bot 65(7):1713–1735

    PubMed  Google Scholar 

  • Caffarri S, Tibiletti T, Jennings CR, Santabarbara S (2014) A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Pep Sc 15(4):296–331

    CAS  Google Scholar 

  • Campbell L, Etchells JP, Cooper M, Kumar M, Turner SR (2018) An essential role for abscisic acid in the regulation of xylem fibre differentiation. Development 145(21):161992

    Google Scholar 

  • Cao X, Yan J, Lei J, Li J, Zhu J, Zhang H (2017) De novo transcriptome sequencing of MeJA-induced Taraxacum koksaghyz Rodin to identify genes related to rubber formation. Sci Rep 7(1):15697

    PubMed  PubMed Central  Google Scholar 

  • Černý M, Novák J, Habánová H, Cerna H, Brzobohatý B (2016) Role of the proteome in phytohormonal signaling. Biochim Biophys Acta 1864(8):1003–1015

    PubMed  Google Scholar 

  • Chaffey N, Barlow P (2002) Myosin, microtubules, and microfilaments: co-operation between cytoskeletal components during cambial cell division and secondary vascular differentiation in trees. Planta 214(4):526–536

    PubMed  CAS  Google Scholar 

  • Chen M, Thelen JJ (2010) The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 22(1):77–90

    PubMed  PubMed Central  Google Scholar 

  • Chen C, Yuan Y, Zhang C, Li H, Ma F, Li M (2017) Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit. Plant Sci 255:40–50

    PubMed  CAS  Google Scholar 

  • Cherian S, Ryu SB, Cornish K (2019) Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotech J 17:2041–2061

    Google Scholar 

  • Chow KS, Wan KL, Isa MNM, Bahari A, Tan SH, Harikrishna K et al. (2007) Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J Exp Bot 58(10):2429–2440

    PubMed  CAS  Google Scholar 

  • Chow KS, Mat-Isa MN, Bahari A, Ghazali AK, Alias H, Mohd-Zainuddin Z et al. (2011) Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex. J Exp Bot 63(5):1863–1871

    PubMed  PubMed Central  Google Scholar 

  • Collins-Silva J, Nural AT, Skaggs A, Scott D, Hathwaik U, Woolsey R et al. (2012) Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism. Phytochemistry 79:46–56

    PubMed  CAS  Google Scholar 

  • Dai L, Nie Z, Kang G, Li Y, Zeng R (2017) Identification and subcellular localization analysis of two rubber elongation factor isoforms on Hevea brasiliensis rubber particles. Plant Physiol Biochem 111:97–106

    PubMed  CAS  Google Scholar 

  • de Faÿ E, Jacob JL (2018) Anatomical organization of the laticiferous system in the bark. Physiology of rubber tree latex. CRC Press, London, pp 3–14

    Google Scholar 

  • Deng X, Guo D, Yang S, Shi M, Chao J, Li H et al. (2018) Jasmonate signalling in the regulation of rubber biosynthesis in laticifer cells of rubber tree Hevea brasiliensis. J Exp Bot 69(15):3559–3571

    PubMed  CAS  Google Scholar 

  • Dharmawardhana P, Brunner AM, Strauss SH (2010) Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa. BMC Genom 11(1):150

    Google Scholar 

  • Dusotoit-Coucaud A, Brunel N, Kongsawadworakul P, Viboonjun U, Lacointe A, Julien JL et al. (2009) Sucrose importation into laticifers of Hevea brasiliensis, in relation to ethylene stimulation of latex production. Ann Bot 104(4):635–647

    PubMed  PubMed Central  CAS  Google Scholar 

  • Eremina M, Rozhon W, Yang S, Poppenberger B (2015) ENO2 activity is required for the development and reproductive success of plants, and is feedback repressed by AtMBP1. Plant J 81(6):895–906

    PubMed  CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371

    PubMed  CAS  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7(3):254–261

    PubMed  CAS  Google Scholar 

  • Fowler JH, Narváez-Vásquez J, Aromdee DN, Pautot V, Holzer FM, Walling LL (2009) Leucine aminopeptidase regulates defense and wound signaling in tomato downstream of jasmonic acid. Plant Cell 21(4):1239–1251

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fukuda H, Ohashi-Ito K (2019) Vascular tissue development in plants. Curr Top Dev Biol 131(303):141–160

    PubMed  Google Scholar 

  • Gampala SS, Kim TW, He JX, Tang W, Deng Z, Bai MY et al. (2007) An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Deve Cell 13(2):177–189

    CAS  Google Scholar 

  • Geigenberger P (2003) Regulation of sucrose to starch conversion in growing potato tubers. J Exp Bot 54(382):457–465

    PubMed  CAS  Google Scholar 

  • Graham PJ, Nguyen B, Burdyny T, Sinton D (2017) A penalty on photosynthetic growth in fluctuating light. Sci Rep 7(1):12513

    PubMed  PubMed Central  Google Scholar 

  • Gronover CS, Wahler D, Prüfer D (2011) Natural rubber biosynthesis and physic-chemical studies on plant derived latex. Biotech Biopolymers 75:88

    Google Scholar 

  • He F (2011) Laemmli-SDS-PAGE. Bio-protocol Bio101: e80. Casp J Environ Sci 17(1):1–9

    Google Scholar 

  • Hisabori T, Sunamura EI, Kim Y, Konno H (2013) The chloroplast ATP synthase features the characteristic redox regulation machinery. Antioxid Redox Signal 19(15):1846–1854

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81(3):802–806

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J et al. (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteom 4(9):1265–1272

    CAS  Google Scholar 

  • Jung JH, Park CM (2007) Vascular development in plants: specification of xylem and phloem tissues. J Plant Biol 50(3):301–305

    CAS  Google Scholar 

  • Keegstra K (2010) Plant cell walls. Plant Physiol 154(2):483–486

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lacote R, Gabla O, Obouayeba S, Eschbach JM, Rivano F, Dian K, Gohet E (2010) Long-term effect of ethylene stimulation on the yield of rubber trees is linked to latex cell biochemistry. Field Crops Res 115(1):94–98

    Google Scholar 

  • Laibach N, Hillebrand A, Twyman RM, Prüfer D, Schulze Gronover C (2015) Identification of a Taraxacum brevicorniculatum rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis. Plant J 82(4):609–620

    PubMed  CAS  Google Scholar 

  • Lamblin F, Saladin G, Dehorter B, Cronier D, Grenier E, Lacoux J et al. (2001) Overexpression of a heterologous sam gene encoding S-adenosylmethionine synthetase in flax (Linum usitatissimum) cells: Consequences on methylation of lignin precursors and pectins. Physiol Plant 112(2):223–232

    PubMed  CAS  Google Scholar 

  • Laosombut T, Arreewichit P, Nirapathpongporn K, Traiperm P, Kongsawadworakul P, Viboonjun U, Narangajavana J (2016) Differential expression of methyl jasmonate-responsive genes correlates with laticifer vessel proliferation in phloem tissue of rubber tree (Hevea brasiliensis). J Plant Growth Reg 35(4):1049–1063

    CAS  Google Scholar 

  • Lee J, Han S, Lee HY, Jeong B, Heo TY, Hyun TK et al. (2019) Brassinosteroids facilitate xylem differentiation and wood formation in tomato. Planta 249(5):1391–1403

    PubMed  CAS  Google Scholar 

  • Lemoine R (2000) Sucrose transporters in plants: update on function and structure. Biochim Biophys Acta-Biomemb 1465(1–2):246–262

    CAS  Google Scholar 

  • Li M, Wang S, Liu Y, Zhang Y, Ren M, Liu L et al. (2019) Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco. Plant Mol Biol 100(3):215–230

    PubMed  CAS  Google Scholar 

  • Liu R, Chen S, Jiang J, Zhu L, Zheng C, Han S et al. (2013) Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation. BMC Genom 14(1):919

    Google Scholar 

  • Long X, He B, Gao X, Qin Y, Yang J, Fang Y et al. (2015) Validation of reference genes for quantitative real-time PCR during latex regeneration in rubber tree. Gene 563(2):190–195

    PubMed  CAS  Google Scholar 

  • Lopes FJF, Pauly M, Brommonshenkel SH, Lau EY, Diola V, Passos JL et al. (2010) The EgMUR3 xyloglucan galactosyltransferase from Eucalyptus grandis complements the mur3 cell wall phenotype in Arabidopsis thaliana. Tree Genet Genom 6(5):745–756

    Google Scholar 

  • Lu W, Tang X, Huo Y, Xu R, Qi S, Huang J et al. (2012) Identification and characterization of fructose 1, 6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene 503(1):65–74

    PubMed  CAS  Google Scholar 

  • Men X, Wang F, Chen GQ, Zhang HB, Xian M (2019) Biosynthesis of natural rubber: current state and perspectives. Int J Mol Sci 20(1):50

    Google Scholar 

  • Mokryakova MV, Pogorelko GV, Bruskin SA, Piruzian ES, Abdeeva IA (2014) The role of peptidyl-prolyl cis/trans isomerase genes of Arabidopsis thaliana in plant defense during the course of Xanthomonas campestris infection. Russ J Genet 50(2):140–148

    CAS  Google Scholar 

  • Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16(12):3181–3195

    PubMed  PubMed Central  CAS  Google Scholar 

  • Muñoz-Bertomeu J, Cascales-Miñana B, Alaiz M, Segura JA, Ros R (2010) A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development. Plant Signal Behav 5(1):67–69

    PubMed  PubMed Central  Google Scholar 

  • Nguyen TN, Son S, Jordan MC, Levin DB, Ayele BT (2016) Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC Plant Biol 16(1):28

    PubMed  PubMed Central  Google Scholar 

  • Nie Z, Kang G, Duan C, Li Y, Dai L, Zeng R (2016) Profiling ethylene-responsive genes expressed in the latex of the mature virgin rubber trees using cDNA microarray. PLoS ONE 11(3):e0152039

    PubMed  PubMed Central  Google Scholar 

  • Oakley RV, Wang YS, Ramakrishna W, Harding SA, Tsai CJ (2007) Differential expansion and expression of α-and β-tubulin gene families in Populus. Plant Physiol 145(3):961–973

    PubMed  PubMed Central  CAS  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127(4):1513–1523

    PubMed  PubMed Central  CAS  Google Scholar 

  • Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75(1):1–10

    PubMed  CAS  Google Scholar 

  • Rasmussen CG, Wright AJ, Müller S (2013) The role of the cytoskeleton and associated proteins in determination of the plant cell division plane. Plant J 75(2):258–269

    PubMed  CAS  Google Scholar 

  • Rius SP, Casati P, Iglesias AA, Gomez-Casati DF (2006) Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Plant Mol Biol 61(6):945–957

    PubMed  CAS  Google Scholar 

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R et al. (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16(10):2749–2771

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rosa-Téllez S, Anoman AD, Flores-Tornero M, Toujani W, Alseek S, Fernie AR et al. (2018) Phosphoglycerate kinases are co-regulated to adjust metabolism and to optimize growth. Plant Physiol 176(2):1182–1198

    PubMed  Google Scholar 

  • Sae-Lim P, Naktang C, Yoocha T, Nirapathpongporn K, Viboonjun U, Kongsawadworakul P et al. (2019) Unraveling vascular development-related genes in laticifer-containing tissue of rubber tree by high-throughput transcriptome sequencing. Curr Plant Biol 9:100112

    Google Scholar 

  • Sánchez-Rodríguez C, Rubio-Somoza I, Sibout R, Persson S (2010) Phytohormones and the cell wall in Arabidopsis during seedling growth. Trends Plant Sci 15(5):291–301

    PubMed  Google Scholar 

  • Schneider R, Persson S (2015) Connecting two arrays: the emerging role of actin-microtubule cross-linking motor proteins. Front Plant Sci 6:415

    PubMed  PubMed Central  Google Scholar 

  • Schuetz M, Smith R, Ellis B (2012) Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot 64(1):11–31

    PubMed  Google Scholar 

  • Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J 29(3):371–380

    PubMed  CAS  Google Scholar 

  • Shi D, Allewell NM, Tuchman M (2015a) The N-acetylglutamate synthase family: structures, function and mechanisms. Int J Mol Sci 16(6):13004–13022

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shi J, Yi K, Liu Y, Xie L, Zhou Z, Chen Y et al. (2015b) Phosphoenolpyruvate carboxylase in Arabidopsis leaves plays a crucial role in carbon and nitrogen metabolism. Plant Physiol 167(3):671–681

    PubMed  PubMed Central  CAS  Google Scholar 

  • Silpi U, Lacointe A, Kasempsap P, Thanysawanyangkura S, Chantuma P, Gohet E et al. (2007) Carbohydrate reserves as a competing sink: evidence from tapping rubber trees. Tree Physiol 27(6):881–889

    PubMed  CAS  Google Scholar 

  • Song L, Shi QM, Yang XH, Xu ZH, Xue HW (2009) Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Cell Res 19(7):864–876

    PubMed  CAS  Google Scholar 

  • Sun T, Li S, Ren H (2013) Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells. Front Plant Sci 4:512

    PubMed  PubMed Central  Google Scholar 

  • Tan D, Sun X, Zhang J (2014) Age-dependent and jasmonic acid-induced laticifer-cell differentiation in anther callus cultures of rubber tree. Planta 240(2):337–344

    PubMed  CAS  Google Scholar 

  • Tian WM, Yang SG, Shi MJ, Zhang SX, Wu JL (2015) Mechanical wounding-induced laticifer differentiation in rubber tree: an indicative role of dehydration, hydrogen peroxide, and jasmonates. J Plant Physiol 182:95–103

    PubMed  CAS  Google Scholar 

  • Tungngoen K, Kongsawadworakul P, Viboonjun U, Katsuhara M, Brunel N, Sakr S et al. (2009) Involvement of HbPIP2; 1 and HbTIP1; 1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. Plant Physiol 151(2):843–856

    PubMed  PubMed Central  CAS  Google Scholar 

  • Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Ann Rev Plant Biol 60:207–221

    CAS  Google Scholar 

  • Twardowski T, Legocki AB (1975) Elongation factors complex in plant cells. Plant Sci Lett 5(2):89–95

    Google Scholar 

  • Walker RP, Paoletti A, Leegood RC, Famiani F (2016) Phosphorylation of phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxylase (PEPC) in the flesh of fruits. Plant Physiol Biochem 108:323–327

    PubMed  CAS  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139(2):566–573

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Wang HY, Zhao PM, Han LB, Jiao GL, Zheng YY et al. (2010) Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. Plant Cell Physiol 51(8):1276–1290

    PubMed  CAS  Google Scholar 

  • Xu C, Shen Y, He F, Fu X, Yu H, Lu W et al. (2019) Auxin mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus. New Phytol 222(2):752–767

    PubMed  CAS  Google Scholar 

  • Yagami T, Sato M, Nakamura A, Komiyama T, Kitagawa K, Akasawa A, Ikezawa Z (1998) Plant defense–related enzymes as latex antigens. J Allergy Clin Immunol 101(3):379–385

    PubMed  CAS  Google Scholar 

  • Zhang D, Du Q, Xu B, Zhang Z, Li B (2010) The actin multigene family in Populus: organization, expression and phylogenetic analysis. Mol Genet Genom 284(2):105–119

    CAS  Google Scholar 

  • Zhang S, Tian Z, Li H, Guo Y, Zhang Y, Roberts JA et al. (2019) Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. BMC Genom 20(1):1–16

    Google Scholar 

  • Zhong R, Morrison WH, Himmelsbach DS, Poole FL, Ye ZH (2000) Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124(2):563–578

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu J, Zhang Z (2009) Ethylene stimulation of latex production in Hevea brasiliensis. Plant Signal Beh 4(11):1072–1074

    CAS  Google Scholar 

  • Zhu J, Qi J, Fang Y, Xiao X, Li J, Lan J et al. (2018) Characterization of sugar contents and sucrose metabolizing enzymes in developing leaves of Hevea brasiliensis. Front Plant Sci 9:58

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was supported by Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Institutional Strengthening Program, Faculty of Science, Mahidol University and The Yokohama Rubber Co., Ltd. The authors thank all members in Dr. Onrapak Reamtong's laboratory (Mahidol University) for technical assistance on NanoLC-MS/MS and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarunya Narangajavana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by DeMicco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6036 kb)

Supplementary file2 (XLSX 2720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasongsansuk, P., Thiangtrongjit, T., Nirapathpongporn, K. et al. Comparative proteomic analysis of differentially expressed proteins related to phloem and xylem development in rubber tree (Hevea brasiliensis). Trees 34, 1467–1485 (2020). https://doi.org/10.1007/s00468-020-02019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-020-02019-1

Keywords

Navigation