Skip to main content
Log in

Multilinear Littlewood–Paley–Stein Operators on Non-homogeneous Spaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(m\ge 2, \lambda > 1\) and define the multilinear Littlewood–Paley–Stein operators by \( g_{\lambda ,\mu }^*(\vec {f})(x) = (\iint _{{\mathbb {R}}^{n+1}_{+}} (\frac{t}{t + |x - y|})^{m \lambda } |\int _{({{\mathbb {R}}^n})^{\kappa }} s_t(y,\vec {z}) \prod _{i=1}^{\kappa } f_i(z_i) \ \mathrm{d}\mu (z_1) \cdots \mathrm{d}\mu (z_{\kappa })|^2 \frac{\mathrm{d}\mu (y) \mathrm{d}t}{t^{m+1}})^{1/2}.\) In this paper, our main aim is to investigate the boundedness of \(g_{\lambda ,\mu }^*\) on non-homogeneous spaces. By means of probabilistic and dyadic techniques, together with non-homogeneous analysis, we show that \(g_{\lambda ,\mu }^*\) is bounded from \(L^{p_1}(\mu ) \times \cdots \times L^{p_{\kappa }}(\mu )\) to \(L^p(\mu )\) under certain weak type assumptions. The multilinear non-convolution type kernels \(s_t\) only need to satisfy some weaker conditions than the standard conditions of multilinear Calderón–Zygmund type kernels and the measures \(\mu \) are only assumed to be upper doubling measures (non-doubling). The above results are new even under Lebesgue measures. This was done by considering first a sufficient condition for the strong type boundedness of \(g_{\lambda ,\mu }^*\) based on an endpoint assumption, and then directly deduce the strong bound on a big piece from the weak type assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bui, T.A., Hormozi, M.: Weighted bounds for multilinear square functions. Potential Anal. (2016). https://doi.org/10.1007/s11118-016-9575-9

    Article  MATH  Google Scholar 

  2. Cao, M., Xue, Q.: A non-homogeneous local \(Tb\) theorem for Littlewood-Paley \(g_{\lambda }^{*}\)-function with \(L^p\)-testing condition. Forum Math. 30(2), 457–478 (2018)

    Article  MathSciNet  Google Scholar 

  3. Chen, X., Xue, Q., Yabuta, K.: On multilinear Littlewood-Paley operators. Nonlinear Anal. 115, 25–40 (2015)

    Article  MathSciNet  Google Scholar 

  4. Coifman, R.R., Deng, D., Meyer, Y.: Domains de la racine carrée de certains opérateurs différentiels accrétifs. Ann. Inst. Fourier (Grenoble) 33, 123–134 (1983)

    Article  MathSciNet  Google Scholar 

  5. Coifman, R.R., McIntosh, A., Meyer, Y.: L’integrale de Cauchy definit un operateur borne sur \(L^2\) pour les courbes lips-chitziennes. Ann. Math. 116, 361–387 (1982)

    Article  MathSciNet  Google Scholar 

  6. Coifman, R.R., Meyer, Y.: Au-delà des opérateurs pseudo-différentiels. Asterisque 57, 210 (1978)

    MATH  Google Scholar 

  7. Dahlberg, B., Jerison, D., Kenig, C.: Area integral estimates for elliptic differential operators with non-smooth coefficients. Arkiv för Matematik 22, 97–108 (1984)

    Article  MathSciNet  Google Scholar 

  8. David, G., Journe, J.L.: Une caractérisation des opérateurs intégraux singuliers bornés sur \(L^2({{{\mathbb{R}}^n}})\). C. R. Math. Acad. Sci. Paris 296, 761–764 (1983)

    MathSciNet  MATH  Google Scholar 

  9. de Rosa, L., Segovia, C.: One-sided Littlewood-Paley theory. J. Fourier Anal. Appl. 3, 933–957 (1997)

    Article  MathSciNet  Google Scholar 

  10. Fabes, E.B., Jerison, D., Kenig, C.: Multilinear Littlewood-Paley estimates with applications to partial differential equations. Proc. Natl. Acad. Sci. 79, 5746–5750 (1982)

    Article  MathSciNet  Google Scholar 

  11. Fabes, E.B., Jerison, D., Kenig, C.: Necessary and sufficient conditions for absolute continuity of elliptic harmonic measure. Ann. Math. 119, 121–141 (1984)

    Article  MathSciNet  Google Scholar 

  12. Fabes, E.B., Jerison, D., Kenig, C.: Multilinear square functions and partial differential equations. Am. J. Math. 107, 1325–1368 (1985)

    Article  MathSciNet  Google Scholar 

  13. Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36 (1970)

    Article  MathSciNet  Google Scholar 

  14. Feffrman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  Google Scholar 

  15. Gundy, R.F., Wheeden, R.L.: Weighted integral inequalities for the nontangential maximal function. Lusin area integral, and Walsh-Paley series. Studia Math. 49, 101–118 (1973)

    MathSciNet  MATH  Google Scholar 

  16. He, S., Xue, Q., Mei, T., Yabuta, K.: Existence and boundedness of multilinear Littlewood-Paley operators on Campanato spaces. J. Math. Anal. Appl. 432, 86–102 (2015)

    Article  MathSciNet  Google Scholar 

  17. Hytönen, T.: The sharp weighted bound for general Calderon-Zygmund operators. Ann. Math. (2) 175(3), 1473–1506 (2012)

    Article  MathSciNet  Google Scholar 

  18. Hytönen, T.: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat. 54, 485–504 (2010)

    Article  MathSciNet  Google Scholar 

  19. Kurtz, D.S.: Littlewood-Paley operators on \(BMO\). Proc. Am. Math. Soc. 99, 657–666 (1987)

    Article  MathSciNet  Google Scholar 

  20. Kurtz, D.S.: Rearrangement inequalities for Littlewood-Paley operators. Math. Nachr. 133, 71–90 (1987)

    Article  MathSciNet  Google Scholar 

  21. Lacey, M.T., Petermichl, S., Reguera, M.C.: Sharp \(A_2\) inequality for Haar shift operators. Math. Ann. 348, 127–141 (2010)

    Article  MathSciNet  Google Scholar 

  22. Lerner, A.K.: On pointwise estimates for the Littlewood-Paley operators. Proc. Am. Math. Soc. 131(5), 1459–1469 (2002)

    Article  MathSciNet  Google Scholar 

  23. Lerner, A.K.: On some sharp weighted norm inequalities. J. Funct. Anal. 232, 477–494 (2006)

    Article  MathSciNet  Google Scholar 

  24. Lerner, A.K.: On some weighted norm inequalities for Littlewood-Paley operators. Ill. J. Math. 52(2), 653–666 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Lerner, A.K.: On sharp aperture-weighted estimates for square functions. J. Fourier Anal. Appl. 20, 784–800 (2014)

    Article  MathSciNet  Google Scholar 

  26. Littlewood, J.E., Paley, R.E.A.C.: Theorems on Fourier series and power series. J. Lond. Math. Soc. 6, 230–233 (1931)

    Article  MathSciNet  Google Scholar 

  27. Littlewood, J., Paley, R.: Theorems on Fourier series and power series, II. Proc. Lond. Math. Soc. 42, 52–89 (1936)

    MathSciNet  MATH  Google Scholar 

  28. Marcinkiewicz, J., Zygmund, A.: On a theorem of Lusin. Duke Math. J. 4, 473–485 (1938)

    MathSciNet  MATH  Google Scholar 

  29. Martikainen, H., Vuorinen, E.: Dyadic-probabilistic methods in bilinear analysis. arxiv: 1609.01706

  30. Muckenhoupt, B., Wheeden, R.L.: Norm inequalities for the Littlewood-Paley function \(g_\lambda ^*\). Trans. Am. Math. Soc. 191, 95–111 (1974)

    MATH  Google Scholar 

  31. Nazarov, F., Treil, S., Volberg, A.: Accretive system \(Tb\)-theorems on nonhomogeneous spaces. Duke Math. J. 113(2), 259–312 (2002)

    Article  MathSciNet  Google Scholar 

  32. Nazarov, F., Treil, S., Volberg, A.: The \(Tb\)-theorem on non-homogeneous spaces. Acta Math. 190(2), 151–239 (2003)

    Article  MathSciNet  Google Scholar 

  33. Sakamoto, M., Yabuta, K.: Boundedness of Marcinkiewicz functions. Studia Math. 135, 103–142 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Segovia, C., Wheeden, R.L.: On the function gt and the heat equation. Studia Math. 37, 57–93 (1970)

    Article  MathSciNet  Google Scholar 

  35. Shi, S., Xue, Q., Yabuta, K.: On the boundedness of multilinear Littlewood-Paley \(g_{\lambda }^*\) function. J. Math. Pures Appl. 101, 394–413 (2014)

    Article  MathSciNet  Google Scholar 

  36. Stein, E.M.: On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans. Am. Math. Soc. 88(2), 430–466 (1958)

    Article  MathSciNet  Google Scholar 

  37. Stein, E.M.: On some function of Littlewood-Paley and Zygmund. Bull. Am. Math. Soc. 67, 99–101 (1961)

    Article  Google Scholar 

  38. Tolsa, X.: Analytic capacity, the Cauchy transform, and non-homogeneous Calderón-Zygmund theory, Progress in Mathematics, vol. 307. Birkhäuser Verlag, Basel (2014)

    Book  Google Scholar 

  39. Xue, Q., Yan, J.: On multilinear square function and its applications to multilinear Littlewood-Paley operators with non-convolution type kernels. J. Math. Anal. Appl. 422, 1342–1362 (2015)

    Article  MathSciNet  Google Scholar 

  40. Zygmund, A.: On certain integrals. Trans. Am. Math. Soc. 55, 170–204 (1944)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Emil Vuorinen for some useful suggestions on probabilistic reduction for the case \(p>2\). The authors also want to express their sincere thanks to the referee for his or her valuable remarks and suggestions, which made this paper more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingying Xue.

Ethics declarations

Funding

The first author acknowledges financial support from the Spanish Ministry of Science and Innovation, through the “Severo Ochoa Programme for Centres of Excellence in R&D” (SEV-2015-0554) and from the Spanish National Research Council, through the “Ayuda extraordinaria a Centros de Excelencia Severo Ochoa” (20205CEX001). The second author was supported partly by NSFC (Nos. 11671039, 11871101) and NSFC-DFG (No. 11761131002).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was supported partly by NSFC (Nos. 11671039, 11871101) and NSFC-DFG (No. 11761131002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Xue, Q. Multilinear Littlewood–Paley–Stein Operators on Non-homogeneous Spaces. J Geom Anal 31, 9295–9337 (2021). https://doi.org/10.1007/s12220-020-00491-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00491-2

Keywords

Mathematics Subject Classification

Navigation