Skip to main content
Log in

Development of empirical relationships for surface accommodation coefficients through investigation of nano-poiseuille flows using molecular dynamics method

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this work, we have studied the effects of macroscopic (temperature of gas and wall atoms; velocity of gas near the wall) and microscopic properties (energy well-depth parameter, \(\epsilon\), used in Lennard–Jones potential to describe gas–surface interaction strength) on both energy accommodation coefficients (EAC) and tangential momentum accommodation coefficient (TMAC) using molecular dynamics approach. The effect of aforementioned properties is studied through classical force-driven nano-Poiseuille flow using argon gas and platinum walls. Parameters like temperature of wall, external force acting on gas atoms, and energy well depth (\(\epsilon\)) between gas and surface are varied systematically to study the effects of these parameters on accommodation coefficients. Empirical relationship between the accommodation coefficients (TMAC and EAC) and the above-mentioned properties is obtained by performing non-linear regression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agrawal A, Prabhu SV (2008) Survey on measurement of tangential momentum accommodation coefficient. J Vac Sci Technol A Vac Surf Films 26(4):634–645

    Google Scholar 

  • Arkilic EB, Breuer KS, Schmodt MA (2001) J Fluid Mech. Mass flow and tangential momentum accommodation in silicon micromachined channels 437:29–43

    Google Scholar 

  • Arya G, Chang H-C, Maginn EJ (2003) Molecular simulations of Knudsen wall-slip: effect of wall morphology. Mol Simul 29(10–11):697–709

    MATH  Google Scholar 

  • Barisik M, Beskok A (2012) Surface-gas interaction effects on nanoscale gas flows. Microfluid Nanofluid 13(5):789–798

    Google Scholar 

  • Bird G (1994) Molecular gas dynamics and the direct simulation of gas flows, The Oxford engineering science series. Clarendon Press, Oxford

    Google Scholar 

  • Birkhoff GD (1931) Proof of the Ergodic Theorem. Proc Natl Acad Sci 17(12):656–660

    MATH  Google Scholar 

  • Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Humphrey J, Merlin R, Phillpot SR, Ford WK, Maris HJ (2003) Nanoscale thermal transport. J Appl Phys 93:2

    Google Scholar 

  • Cao B-Y, Chen M, Guo Z-Y (2005) Temperature dependence of the tangential momentum accommodation coefficient for gases. Appl Phys Lett 86:1–4

    Google Scholar 

  • Cao BY, Sun J, Chen M, Guo ZY (2009) Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. Int J Mol Sci 10(11):4638–4706

    Google Scholar 

  • Cercignani C, Lampis M (1971) Kinetic models for gas-surface interactions. Transp Theory Stat Phys 1(2):101–114

    MathSciNet  MATH  Google Scholar 

  • Cercignani C, Lampis M, Lentati A (1995) A new scattering kernel in kinetic theory of gases. Transp Theory Stat Phys 24(9):1319–1336

    MathSciNet  MATH  Google Scholar 

  • Chirita V, Pailthorpe B, Collins R (1997) Non-equilibrium energy and momentum accommodation coefficients of Ar atoms scattered from Ni (001) in the thermal regime: a molecular dynamics study. Nucl Instrum Methods Phys Res B 129:465–473

    Google Scholar 

  • Christoper D (2016) Introduction to econometrics. Oxford University Press, Oxford

    Google Scholar 

  • Dadzie SK, Méolans JG (2004) Anisotropic scattering kernel: Generalized and modified Maxwell boundary conditions. J Math Phys 45(5):1804–1819

    MathSciNet  MATH  Google Scholar 

  • Ewart T, Perrier P, Graur IA, Meolans JG (2007) Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J Fluid Mech 584:337–356

    MATH  Google Scholar 

  • Foiles S, Baskes M, Daw M (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983–7991

    Google Scholar 

  • Frezzotti A, Nedea SV, Markvoort AJ, Spijker P, Gibelli L (2008) Comparison of molecular dynamics and kinetic modeling of gas-surface interaction. In: 26th International Symposium on Rarefied Gas Dynamics (RGD26), Kyoto, Japan, 20-25 July 2008

  • Goodman FO (1980) Thermal accommodation coefficients. J Phys Chem 84(12):1431–1445

    Google Scholar 

  • Gu K, Watkins CB, Koplik J (2010) Atomistic hybrid DSMC/NEMD method for nonequilibrium multiscale simulations. J Comput Phys 229(5):1381–1400

    MathSciNet  MATH  Google Scholar 

  • Honig CDF, Ducker WA (2010) Effect of molecularly thin films on lubrication forces and accommodation coefficients in air. J Phys Chem C 114(47):20114–20119

    Google Scholar 

  • Hoover W (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Google Scholar 

  • Kammara KK, Malaikannan G, Kumar R (2016) Molecular dynamics study of gas-surface interactions in a force-driven flow of argon through a rectangular nanochannel. Nanoscale Microscale Thermophys Eng 20(2):121–136

    Google Scholar 

  • Kammara KK, Kumar R, Singh AK, Chinnappan AK (2019) Systematic direct simulation Monte Carlo approach to characterize the effects of surface roughness on accommodation coefficients. Phys Rev Fluids 4:123401

    Google Scholar 

  • Ketsdever AD, Wadsworth DC, Muntz EP (2001) Gas-surface interaction model influence on predicted performance of microelectromechanical system resistojet. J Thermophys Heat Transfer 15(3):302–307

    Google Scholar 

  • Koplik J, Banavar JR, Willemsen JF (1989) Molecular dynamics of fluid flow at solid surfaces. Phys Fluids A Fluid Dyn 781(1):781–794

    Google Scholar 

  • Léonard C, Brites V, Pham TT, To QD, Lauriat G (2013) Influence of the pairwise potential on the tangential momentum accommodation coefficient: A multi-scale study applied to the argon on Pt(111) system. Euro Phys J B 86(4):164

    Google Scholar 

  • Leung R, Cheung H, Gang H, Ye W (2010) A Monte Carlo simulation approach for the modeling of free-molecule squeeze-film damping of flexible microresonators. Microfluid Nanofluid 9(4):809–818

    Google Scholar 

  • Lord RG (1977) Gas-surface interaction: Tangential momentum accommodation coefficients of rare gases on polycrystalline metal surfaces. Rarefied Gas Dynamics, Parts I and II, Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, pp 531–538

  • Lord RG (1995) Some further extensions of the Cercignani-Lampis gas-surface interaction model. Phys Fluids 7(5):1159–1161

    MATH  Google Scholar 

  • Maxwell JC (1879) On stresses in rarified gases aArising from inequalities of temperature. Philos Transact R Soc London 170:231–256

    MATH  Google Scholar 

  • Maxwell JC (2011) The scientific papers of James Clerk Maxwell (Cambridge Library Collection—Physical Sciences). Cambridge University Press, Cambridge

    Google Scholar 

  • Mehta NA, Levin DA (2017) Molecular dynamics derived gas-surface models for use in direct simulation Monte Carlo. J Thermophys Heat Transfer 31(4):757–771

    Google Scholar 

  • Nedea SV, Frijns AJH, Van Steenhoven AA, Markvoort AJ, Hilbers PAJ (2005) Hybrid method coupling molecular dynamics and Monte Carlo simulations to study the properties of gases in microchannels and nanochannels. Phys Rev E 72(1):16705

    Google Scholar 

  • Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Google Scholar 

  • Ohwada T (1996) Heat flow and temperature and density distributions in a rarefied gas between parallel plates with different temperatures. Finite-difference analysis of the nonlinear Boltzmann equation for hard-sphere molecules. Phys Fluids 8(8):2153–2160

    MATH  Google Scholar 

  • Peddakotla SA, Kammara KK, Rakesh K (2019) Molecular dynamics simulation of particle trajectory for the evaluation of surface accommodation coefficients. Microfluid Nanofluid 23(6):1–17

    Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1995):1–19

    MATH  Google Scholar 

  • Prabha SK, Sathian SP (2013) Calculation of thermo-physical properties of Poiseuille flow in a nano-channel. Int J Heat Mass Transf 58(1–2):217–223

    Google Scholar 

  • Rader DJ, Trott WM, Torczynski JR, Castañeda JN, Grasser TW (2005) Measurements of Thermal Accomodation Coefficients. Sandia Technical Report: SAND2005-6084

  • Santos WFN (2007) Gas-surface interaction effect on round leading edge aerothermodynamics. Brazilian Journal of Physics 37(2a):337–348

    Google Scholar 

  • Seidl M, Steinheil E (1974) Measurement of momentum accommodation coefficients on surfaces characterized by Auger spectroscopy. In: SIMS and LEED Proccedings International Symposium on Rarefied Gas Dynamics, No. 47, pp 20114–20119

    Google Scholar 

  • Spijker P, Markvoort AJ, Nedea SV, Hilbers PAJ (2010) Computation of accommodation coefficients and the use of velocity correlation profiles in molecular dynamics simulations. Phys Rev E 81(1):11203

    Google Scholar 

  • Struchtrup H (2013) Maxwell boundary condition and velocity dependent accommodation coefficient. Phys Fluids 25:11

    Google Scholar 

  • Sun J, Li Z-X (2008) Effect of gas adsorption on momentum accommodation coefficients in microgas flows using molecular dynamic simulations. Mol Phys 106(19):2325–2332

    Google Scholar 

  • Sun J, Li Z-X (2011) Three-dimensional molecular dynamic study on accommodation coefficients in rough nanochannels. Heat Transf Eng 32:658–666

    Google Scholar 

  • Toxvaerd S (1998) The structure and thermodynamics of a solid—fluid interface. J Chem Phys 74:1998–2005

    Google Scholar 

  • Travis KP, Todd BD, Evans DJ (1997) Departure from Navier-Stokes hydrodynamics in confined liquids. Phys Rev E 55(4):4288–4295

    Google Scholar 

  • Trott W, Rader D, Castaneda J, Torczynski J, Gallis M (2007) Experimental measurements of thermal accommodation coefficients for microscale gas-phase heat transfer. In: 39th AIAA Thermophysics Conference, pp 1–31

  • Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    Google Scholar 

  • Wachman HY (1962) The thermal accommodation coefficient: a critical survey. ARS J 32(1):2–12

    Google Scholar 

  • Yamamoto K (2001) Slightly rarefied gas flow over a smooth platinum surface. AIP Conf Proc 585(1):339–346

    Google Scholar 

  • Yamamoto K (2002) Slip flow over a smooth platinum surface. JSME Int J Ser B Fluids Therm Eng 45(4):788–795

    Google Scholar 

  • Yamamoto K, Takeuchi H, Hyakutake T (2006) Characteristics of reflected gas molecules at a solid surface. Phys Fluids 18(4):046103–1–046103–11

    Google Scholar 

  • Yamamoto K, Takeuchi H, Hyakutake T (2007) Scattering properties and scattering kernel based on the molecular dynamics analysis of gas-wall interaction. Phys Fluids 19(8):087102

    MATH  Google Scholar 

  • Yamanishi N, Matsumoto Y, Shobatake K (1999) Multistage gas-surface interaction model for the direct simulation Monte Carlo method. Phys Fluids 11(11):3540–3552

    MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of computing facilities available at the High-Performance Computing Facility at the Computer Center, IIT Kanpur, for carrying out the work presented in the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammara, K.K., Kumar, R. Development of empirical relationships for surface accommodation coefficients through investigation of nano-poiseuille flows using molecular dynamics method. Microfluid Nanofluid 24, 70 (2020). https://doi.org/10.1007/s10404-020-02375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-020-02375-x

Navigation