Skip to main content
Log in

Manganese oxidation states repartition in a channel-like mesoporous zirconium oxide

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

A Correction to this article was published on 11 January 2021

This article has been updated

Abstract

Here, we present a characterization of mesoporous mixed manganese zirconium oxide (MnZr) synthesized by evaporation induced self-assembly method involving a block copolymer self-assembly method. The MnZr oxide has been fully characterized by X-ray diffraction, transmission electronic microscopy, analytical electronic tomography, nitrogen adsorption/desorption isotherms, thermogravimetric analysis, X-ray photoelectron spectroscopy and electronic paramagnetic resonance. Electronic tomography analysis reveals that a mesoporous solid solution MnZr was successfully obtained by this way, with a homogeneous dispersion of Mn. X-ray diffraction, X-ray photoelectron spectroscopy, thermal analysis and electronic paramagnetic resonance inform about the manganese oxidation states present (Mn2+, Mn3+, Mn4+) and their location within the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. J. Gimenez-Manogil, S. Quiles-Dıaz, N. Guillen-Hurtado, A. Garcıa-Garcıa, Catalyzed particulate filter regeneration by platinum versus noble metal-free catalysts: from principles to real application. Top Catal 60, 2–12 (2017)

    Article  CAS  Google Scholar 

  2. A. Bonnefont, A.S. Ryabova, T. Schott, G. Kéranguéven, S.Y. Istomin, E.V. Antipov, E.R. Savinova, Challenges in the understanding oxygen reduction electrocatalysis on transition metal oxides. Curr. Opin. Electrochem. 14, 23–31 (2019)

    Article  CAS  Google Scholar 

  3. D. Chlala, J.-M. Giraudon, N. Nuns, M. Labaki, J.-F. Lamonier, Highly active noble-metal-free copper hydroxyapatite catalysts for the total oxidation of toluene. Chem Cat Chem 9, 2275–2283 (2017)

    CAS  Google Scholar 

  4. E. Moharreri, W.A. Hines, S. Biswas, D.M. Perry, H. Junkai, D. Murray-Simmons, S.L. Suib, Comprehensive magnetic study of nanostructured mesoporous manganese oxide materials and implications for catalytic behavior. Chem. Mater. 30(3), 1164–1177 (2018)

    Article  CAS  Google Scholar 

  5. W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)

    Article  CAS  PubMed  Google Scholar 

  6. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B 204, 250–272 (2014)

    Article  CAS  Google Scholar 

  7. A. Chen, T. Miyao, K. Higashiyama, M. Watanabe, High catalytic performance of mesoporous zirconia supported nickel catalysts for selective CO methanation. Catal. Sci. Technol. 4, 2508–2511 (2014)

    Article  CAS  Google Scholar 

  8. S. Biswas, B. Dutta, A. Mannodi-Kanakkithodi, R. Clarke, R.W. Song, R. Ramprasad, S.L. Suib, Heterogeneous mesoporous manganese/cobalt oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Chem. Commun. 53(86), 11751–11754 (2017)

    Article  CAS  Google Scholar 

  9. T.N. Afonasenko, O.A. Bulavchenko, T.I. Gulyaeva, S.V. Tsybuly, P.G. Tsyrulnikov, Effect of the calcination temperature and composition of the MnOx-ZrO2 system on its structure and catalytic properties in a reaction of carbon monoxide oxidation. Kinetics Catal. 59(1), 1046111 (2018)

    Article  Google Scholar 

  10. C. Lee, Y. Shul, H. Einaga, Silver and manganese oxide catalysts supported on mesoporous ZrO2 nanofiber mats for catalytic removal of benzene and diesel soot. Catal. Today 281, 460–466 (2017)

    Article  CAS  Google Scholar 

  11. Z. Hou, J. Feng, T. Lin, H. Zhang, X. Zhou, Y. Chen, The performance of manganese-based catalysts with Ce0.65Zr0.35O2 as support for catalytic oxidation of toluene. Appl. Surf. Sci. 434, 82–90 (2018)

    Article  CAS  Google Scholar 

  12. J. Gao, Y. Han, J. Mu, S. Wu, F. Tan, Y. Shi, X. Li, 2D, 3D mesostructured silicas templated mesoporous manganese dioxide for selective catalytic reduction of NOx with NH3. J. Collidal. Interf. Sci. 516, 254–262 (2018)

    Article  CAS  Google Scholar 

  13. B. Jia, J. Guo, H. Luo, S. Shu, N. Fang, J. Li, Study of NO removal and resistance to SO2 and H2O of MnOx/TiO2, MnOx/ZrO2 and MnOx/ZrO2–TiO2. Appl. Catal. A 553, 82–90 (2018)

    Article  CAS  Google Scholar 

  14. T. Tsoncheva, L. Ivanova, D. Paneva, I. Mitov, C. Minchev, M. Fröba, Cobalt and iron oxide modified mesoporous zirconia: preparation, characterization and catalytic behaviour in methanol conversion. Microporous Mesoporous Mater. 120, 389–396 (2009)

    Article  CAS  Google Scholar 

  15. K. Tanabe, Surface and catalytic properties of ZrO2. Mater. Chem. Phys. 13, 347–364 (1985)

    Article  CAS  Google Scholar 

  16. J. Zippel, M. Lorenz, J. Lenzner, M. Grundmann, T. Hammer, A. Jacquot, H. Bottner, Electrical transport and optical emission of MnxZr1−xO2(0≤x≤0.5) thin films. J. Appl. Phys. 110, 043706 (2011)

    Article  CAS  Google Scholar 

  17. O.A. Bulavchenko, Z.S. Vinokurov, T.N. Afonasenko, P.G. Tsyrulnikov, S.V. Tsybulya, A.A. Saraev, V.V. Kaichev, Reduction of mixed Mn–Zr oxides: in situ XPS and XRD studies. Dalton Trans. 44, 15499 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. J.I. Gutierrez-Ortiz, B. de Rivas, R. Lopez-Fonseca, S. Martın, J.R. Gonzalez-Velasco, Structure of Mn-Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons. Chemosphere 68, 1004–1012 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Z. Miao, H. Zhao, J. Yang, J. Zhao, H. Song, L. Chou, Mesoporous Mn–Zr composite oxides with a crystalline wall: synthesis, characterization and application. Dalton Trans. 44, 2997 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. E. Fanelli, M. Turco, A. Russo, G. Bagnasco, S. Marchese, P. Pernice, A. Aronne, MnOx /ZrO2 gel-derived materials for hydrogen peroxide decomposition. J Sol-Gel Sci Technol. 60, 426–436 (2011)

    Article  CAS  Google Scholar 

  21. M.L. Hernandez, J.A. Montoya, P. Del Angel, I. Hernandez, G. Espinosa, M.E. Llanos, Influence of the synthesis method on the nanostructure and reactivity of mesoporous Pt/Mn-WOx-ZrO2 catalysts. Catal. Today 116, 169–178 (2006)

    Article  CAS  Google Scholar 

  22. A.J. Carrillo, D. Sastre, L. Zazo, D.P. Serrano, J.M. Coronado, P. Pizarro, Hydrogen production by methane decomposition over MnOx/YSZ catalysts. Int J of Hydrogen Energy 4(1), 19382–19389 (2016)

    Article  CAS  Google Scholar 

  23. M.I. Zaki, M.A. Hasan, L. Pasupulety, N.E. Fouad, H. Knozinger, CO and CH4 total oxidation over manganese oxide supported on ZrO2, TiO2, TiO2–Al2O3 and SiO2–Al2O3 catalysts. New J. Chem. 23, 1197–1202 (1999)

    Article  CAS  Google Scholar 

  24. D. Döbber, D. Kießling, W. Schmitz, G. Wendt, MnOx/ZrO2 catalysts for the total oxidation of methane and chloromethane. Appl. Catal. B 52, 135–143 (2004)

    Article  CAS  Google Scholar 

  25. X. Yang, X. Yu, M.J.W. Song, J. Liu, M. Ge, Defective MnxZr1−xO2 solid solution for the catalytic oxidation of toluene: insights into the oxygen vacancy contribution. ACS Appl Mater. Interfaces 11, 730–739 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Wang, H. Arandiyan, J. Scott, A. Bagheri, H. Dai, R. Amal, Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review. J. Mater. Chem. A 5, 8825 (2017)

    Article  CAS  Google Scholar 

  27. L. Zhang, L. Jin, B. Liu, J. He, Templated growth of crystalline mesoporous materials: from soft/hard templates to colloidal templates. Frontiers Chem. (2019). https://doi.org/10.3389/fchem.2019.00022

    Article  Google Scholar 

  28. A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1–45 (2005). https://doi.org/10.1016/j.micromeso.2004.06.030

    Article  CAS  Google Scholar 

  29. Q. Yuan, L.-L. Li, S.-L. Lu, H.-H. Duan, Z.-X. Li, Y.-X. Zhu, C.-H. Yan, Facile synthesis of Zr-based functional materilas with highly ordered mesoporous structures. J. Phys. Chem. C 113, 4117–4124 (2009)

    Article  CAS  Google Scholar 

  30. K. Yuan, X. Jin, Z. Yu, X. Gan, X. Wang, G. Zhang, L. Zhu, D. Xu, Electrospun mesoporous zirconia ceramic fibers for catalyst supporting applications. Ceram. Int. 44, 282–289 (2018)

    Article  CAS  Google Scholar 

  31. D. Gu, W. Schmidt, C. Pichler, H.J. Bongard, B. Spliethoff, S. Asahina, C. Shunsuke, Z. Cao, O. Terasaki, F. Schuth, Surface-casting synthesis of mesoporous zirconia with a CMK-5-like structure and high surface area. Angewandte Chem. (2017). https://doi.org/10.1002/anie.201705042

    Article  Google Scholar 

  32. P.A. Midgley, R.E. Dunin-Borkowski, Electron tomography and holography in materials science. Nat. Mater. 8, 271–280 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. H. Friedrich, P.E. de Jongh, A.J. Verkleij, K.P. de Jong, Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem. Rev. 109(5), 1613–16629 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. M. Weyland, P.A. Midgley, Electron tomography. Mater. Today 17(12), 32–40 (2004)

    Article  Google Scholar 

  35. C. Messaoudi, N. Aschman, M. Cunha, T. Oikawa, C.O. Sanchez-Sorzano, S. Marco, Three-dimensional chemical mapping by EFTEM-TomoJ including improvement of SNR by PCA and ART reconstruction of volume by noise suppression. Microscopy Microanal 16, 1669–1716 (2013)

    Article  CAS  Google Scholar 

  36. https://www.jove.com/video/56671/obtaining-3d-chemical-maps-energy-filtered-transmission-electron

  37. L. Roiban, O. Ersen, C. Hirlimann, M. Drillon, A. Chaumonnot, L. Lemaitre, A.-S. Gay, L. Sorbier, Three-dimensional analytical surface quantification of heterogeneous silica-alumina catalyst supports. Chem. Cat. Chem 9, 3503–3512 (2017)

    CAS  Google Scholar 

  38. M. Doube, M.M. Kłosowski, I. Arganda-Carreras, F.P. Cordelières, P. Dougherty, J.S. Jackson, B. Schmid, J.R. Hutchinson, S.J. Shefelbine, BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  39. E. Maire, P. Colombo, J. Adrien, L. Babout, L. Biasetto, Characterisation of the morphology of porous ceramics by 3D image processing of X-ray tomography data. J. Eur. Ceram. Soc. 27(4), 1973–1981 (2007)

    Article  CAS  Google Scholar 

  40. https://imagej.nih.gov/ij/plugins/volume-viewer.html

  41. A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J.V. Miller, S. Pieper, R. Kikinis, 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  42. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 731, 373–380 (1951)

    Article  Google Scholar 

  43. S. Brunauer, P.H. Emmet, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  CAS  Google Scholar 

  44. M. Ozawa, K. Hashimoto, S. Suzuki, Structural and ESR characterization of heat-stable manganese-alumina lean NO removal catalyst. Appl. Surf. Sci. 121, 437–440 (1997)

    Article  Google Scholar 

  45. B. Conlan, N. Cox, J.H. Su, W. Hillier, J. Messinger, W. Lubitz, P. Leslie-Dutton, T. Wydrzynski, Photo-catalytic oxidation of a di-nuclear manganese centre in an engineered bacterioferritin reaction centre. Biochim Biophys Acta 1787, 1112–1121 (2009)

    Article  CAS  PubMed  Google Scholar 

  46. J.I. Gutierrez-Ortiz, B. de Rivas, R. Lopez-Fonseca, S. Martin, J.R. Gonzales-Velasco, Structure of Mn-Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons. Chemosphere 68, 1004–1012 (2007)

    Article  CAS  PubMed  Google Scholar 

  47. M. Valigi, D. Gazzoli, R. Dragone, A. Marucci, G. Mattei, Manganese oxide–zirconium oxide solid solutions: an X-ray diffraction, Raman spectroscopy, thermogravimetry and magnetic study. J. Mater. Chem. 6, 403–408 (1996)

    Article  CAS  Google Scholar 

  48. L. Tao, T.A. Stich, A.V. Soldatova, B.M. Tebo, T.G. Spiro, W.H. Casey, R.D. Britt, Mn(III) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy. J. Biol. Inorg. Chem. 23(7), 1093–1104 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. D. Pomykalska, M.M. Bućko, M. Rękas, Electrical conductivity of MnOx-Y2O3-ZrO2 solid solutions. Solid State Ionics 181, 48–52 (2010)

    Article  CAS  Google Scholar 

  50. A. Nandy, A. Dutta, S.K. Pradhan, Microstructure correlated electrical conductivity of Manganese alloyed nanocrystalline cubic zirconia synthesized by mechanical alloying. Adv. Powder Technol. 28, 618–628 (2017)

    Article  CAS  Google Scholar 

  51. S. Pattanaik, S. Martha, M.K. Sharma, S.K. Pradhan, R. Sakthivel, R. Chatterjee, D.K. Mishra, Enhancement of room temperature ferromagnetism in nanocrystalline Zr1-xMnxO2 by the suppression of monoclinic structure of zirconia. J. Magn. Magn. Mater. 494, 165768 (2020)

    Article  CAS  Google Scholar 

  52. G. Sharma, S.V. Ushakov, A. Navrotsky, Size driven thermodynamic crossovers in phase stability in zirconia and hafnia. J Am Ceram Soc. 101, 31–35 (2018)

    Article  CAS  Google Scholar 

  53. F. Schmit, L. Bois, R. Chiriac, F. Toche, F. Chassagneux, M. Besson, C. Descorme, L. Khrouz, Mesoporous titanium oxide supported manganese oxide catalysts: Influence of the block copolymer. J. Solid. State. Chem. 221, 291–301 (2015)

    Article  CAS  Google Scholar 

  54. S. Figueroa, J. Desimoni, P.C. Rivas, M.M. Cervera, M.C. Caracoche, Hyperfine study on sol-gel derived-hematite doped zirconia. Chem. Mater. 17, 3486–3491 (2005)

    Article  CAS  Google Scholar 

  55. A. Hahn, T. Ressler, R. E. Jentoft, F. C. Jentoft, The role of the "glow phenomenon" in the preparation of sulfated zirconia catalysts. Chem. Commun. (2001) 537–538.

  56. A.H.P. Hahn, R.E. Jentoft, T. Ressler, G. Weinberg, R. Schlögl, F.C. Jentoft, Rapid genesis of active phase during calcination of promoted sulfated zirconia catalysts. J. Catal. 236, 324–334 (2005)

    Article  CAS  Google Scholar 

  57. L. Chen, J. Hu, R.M. Richards, Catalytic properties of nanoscale iron-doped zirconia solid-solution aerogels. Chem. Phys. Chem 9, 1069–1078 (2008)

    Article  CAS  PubMed  Google Scholar 

  58. A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, C. J. Powell, NIST X-ray Photoelectron Spectroscopy Database/ NIST Standard Reference Database 20, Version 4.1, https://srdata.nist.gov/xps.

Download references

Acknowledgments

This work has been supported at the Laboratory of Multimaterials and Interfaces—UMR 5615. This work was financially supported by the Région Rhône-Alpes. The authors gratefully acknowledge Florian Molton and Carole Duboc, GHMFL-LCMI, Université Joseph Fourier Grenoble 1, for their help during the EPR experiments and the national EPR network TGE RENARD, FR 3443 – CNRS. The authors gratefully acknowledge the national EPR federation RENARD (IT CNRS 3443) and the Département de Chimie Moléculaire, Université Grenoble Alpes. LB and LR thank to the METSA (FR CNRS 3507) network for the financial support of the AET experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Bois.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couzon, N., Bois, L., Fellah, C. et al. Manganese oxidation states repartition in a channel-like mesoporous zirconium oxide. J Porous Mater 27, 1823–1835 (2020). https://doi.org/10.1007/s10934-020-00962-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00962-5

Keywords

Navigation