Skip to main content
Log in

Clout of carbon in polyacrylonitrile/sulfur composite cathode via solution processing technique for lithium-sulfur batteries

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A bamboo-like carbon scaffold poly (acrylonitrile) (PAN)–sulfur–composite electrode was prepared by a solution-processing technique. The Kombucha scoby derived carbon (KC) contains ample meso porous nature which is not only for anchoring active sulfur but also preventing the dissolution of polysulfides during the cycling process. A PAN–sulfur–carbon cathode made with 56 wt% sulfur loading delivered an initial discharge capacity of 1444 mAh g−1 at 0.1 C rate with 98% of Coulombic efficiency and high capacity retention of 1044 mAh g− 1 during the 60th cycle due to its peculiar morphology of the prepared composite cathode material obtained by solution processing technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nano materials for advanced energy conversion and storage. Small 8, 1130–1166 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2009)

    Article  CAS  Google Scholar 

  4. H.S. Kim, T.S. Arthur, G.D. Allred, J. Zajicek, J.G. Newman, A.E. Rodnyansky, A.G. Oliver, W.C. Boggess, J. Muldoon, Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011)

    Article  PubMed  CAS  Google Scholar 

  5. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. R. Zou, Q. Liu, G. He, M.F. Yuen, K. Xu, J. Hu, I.P. Parkin, C.S. Lee, W. Zhang, Nanoparticles encapsulated in porous carbon matrix coated on carbon fibers: an ultrastable cathode for li-ion batteries. Adv. Energy Mater. 7, 1601363 (2017)

    Article  CAS  Google Scholar 

  7. X. Meng, X.Q. Yang, X. Sun, Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 24, 3589–3615 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. M.Z. Jacobson, Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2, 148–173 (2009)

    Article  CAS  Google Scholar 

  9. Z. Lin, C. Nan, Y. Ye, J. Guo, J. Zhu, E.J. Cairns, High-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode. Nano Energy 9, 408–416 (2014)

    Article  CAS  Google Scholar 

  10. X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. C. Liang, N.J. Dudney, J.Y. Howe, Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 21, 4724–4730 (2009)

    Article  CAS  Google Scholar 

  12. Y. Yang, M.T. McDowell, A. Jackson, J.J. Cha, S.S. Hong, Y. Cui, New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486–1491 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. D. Marmorstein, T. Yu, K. Striebel, F. McLarnon, J. Hou, E. Cairns, Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J. Power Sources. 89, 219–226 (2000)

    Article  CAS  Google Scholar 

  14. X.B. Cheng, J.Q. Huang, Q. Zhang, H.J. Peng, M.Q. Zhao, F. Wei, Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy 4, 65–72 (2014)

    Article  CAS  Google Scholar 

  15. J. Zhang, J.Y. Xiang, Z.M. Dong, Y. Liu, Y.S. Wu, C.M. Xu, G.H. Du, Biomass derived activated carbon with 3D connected architecture for rechargeable lithium–sulfur batteries. Electrochim. Acta. 116, 146–151 (2014)

    Article  CAS  Google Scholar 

  16. N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Porous hollow carbon@ sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011)

    Article  CAS  Google Scholar 

  17. S.R. Zhao, C.M. Li, W.K. Wang, H. Zhang, M.Y. Gao, X. Xiong, A.B. Wang, K.G. Yuan, Y.Q. Huang, F. Wang, A novel porous nano composite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries. J. Mater. Chem. A 1, 3334–3339 (2013)

    Article  CAS  Google Scholar 

  18. J.C. Guo, Z.C. Yang, Y.C. Yu, H.D. Abruña, L.A. Archer, Lithium-sulfur battery cathode enabled by lithium-nitrile interaction. J. Am. Chem. Soc. 135, 763–767 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. P. Rajkumar, K. Diwakar, G. Radhika, K. Krishnaveni, R. Subadevi, M. Sivakumar, Effect of silicon dioxide in sulfur/carbon black composite as a cathode material for lithium sulfur batteries. Vacuum 161, 37–48 (2019)

    Article  CAS  Google Scholar 

  20. K. Krishnaveni, R. Subadevi, G. Radhika, T. Premkumar, M. Raja, W.R. Liu, M. Sivakumar, Carbon wrapping effect on sulfur/ polyacrylonitrile composite cathode materials for lithium sulfur batteries. J. Nano Sci. Nano Technol. 18, 121–126 (2018)

    Article  CAS  Google Scholar 

  21. H. Chen, P. Xia, W. Lei, Y. Pan, Y. Zou, Z. Ma, Preparation of activated carbon derived from biomass and its application in lithium–sulfur batteries. J. Porous Mater. 26(5), 1325–1333 (2019)

    Article  CAS  Google Scholar 

  22. H.T. Lin, G. Yang, Y.Y. Tsao, Y. Liu, C. Yu, Ionic liquid treated carbon nanotube sponge as high areal capacity cathode for lithium sulfur batteries. J. Appl. Electrochem. 48(5), 487–494 (2018)

    Article  CAS  Google Scholar 

  23. J. Brìckner, S. Thieme, H.T. Grossmann, S. Dçrfler, H. Althues, S. Kaskel, Lithium–sulfur batteries: influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. J. Power Sources. 268, 82–87 (2014)

    Article  CAS  Google Scholar 

  24. C. Dillard, S.H. Chung, A. Singh, A. Manthiram, V. Kalra, Binder-free, freestanding cathodes fabricated with an ultra-rapid diffusion of sulfur into carbon nanofiber mat for lithium sulfur batteries. Mater. Today Energy 9, 336–344 (2018)

    Article  Google Scholar 

  25. L. Wu, Y. Zhang, B. Li, P. Wang, L. Fan, N. Zhang, K. Sun, Fabrication of layered structure VS4 anchor in 3D graphene aerogels as a new cathode material for lithium ion batteries. Front. Energy. 13(3), 597–602 (2019)

    Article  Google Scholar 

  26. Y. Zhang, Z. Gao, N. Song, J. He, X. Li, Graphene and its derivatives in lithium–sulfur batteries. Mater. Today Energy 9, 319–335 (2018)

    Article  Google Scholar 

  27. K. Krishnaveni, R. Subadevi, M. Sivakumar, A solution-processed binary composite as a cathode material in lithium–sulfur batteries. Appl. Phys. A. 125(7), 469 (2019)

    Article  CAS  Google Scholar 

  28. F.F. Zhang, X.B. Zhang, Y.H. Dong, L.M. Wang, Facile and effective synthesis of reduced graphene oxide encapsulated sulfur via oil/water system for high performance lithium sulfur cells. J. Mater. Chem. 22, 11452–11454 (2012)

    Article  CAS  Google Scholar 

  29. M. Raja, N. Angulakshmi, A.M. Stephan, Sisal-derived activated carbons for cost-effective lithium–sulfur batteries. RSC Adv. 6, 13772–13779 (2016)

    Article  CAS  Google Scholar 

  30. K. Lota, I. Acznik, A. Sierczyńska, G. Lota, The capacitance properties of activated carbon obtained from chitosan as the electrodematerial for electrochemical capacitors. Mater. Lett. 173, 72–75 (2016)

    Article  CAS  Google Scholar 

  31. M. Liu, Y. Chen, K. Chen, N. Zhang, X. Zhao, F. Zhao, Z. Dou, X. He, Biomass derived activated carbon for rechargeable lithium–sulfur batteries. Bioresources 10, 155–168 (2015)

    Google Scholar 

  32. E. Köseoʇlu, C. Akmil-Başar, Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv. Powder Technol. 26, 811–818 (2015)

    Article  CAS  Google Scholar 

  33. P. Nowicki, J. Kaźmierczak, R. Pietrzak, Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones. Powder Technol. 269, 312–319 (2014)

    Article  CAS  Google Scholar 

  34. K. Krishnaveni, R. Subadevi, M. Raja, T. PremKumar, M. Sivakumar, Sulfur/PAN/acetylene black composite prepared by a solution processing technique for lithium–sulfur batteries. J. Appl. Polym. Sci. 135, 46598 (2018)

    Article  CAS  Google Scholar 

  35. W. Zhou, C. Wang, Q. Zhang, H.D. Abruña, Y. He, J. Wang, S.X. Mao, X. Xiao, Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium–sulfur batteries. Adv. Energy Mater. 5, 1401752 (2015)

    Article  CAS  Google Scholar 

  36. D.H. Seo, A.E. Rider, Z.J. Han, S. Kumar, K.K. Ostrikov, Plasma break-down and re‐build: same functional vertical graphenes from diverse natural precursors. Adv. Mater. 25, 5638–5642 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. H. Kim, J. Lee, H. Ahn, O. Kim, M.J. Park, Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries. Nat. Commun. 6, 7278 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. L. Ni, G. Zhao, G. Yang, G. Niu, M. Chen, G. Diao, Dual core–shell-structured S@C@MnO2 nanocomposite for highly stable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 9, 34793–34803 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. Q. Pang, J. Tang, H. Huang, X. Liang, C. Hart, K.C. Tam, L.F. Nazar, A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@ cellulose for advanced lithium–sulfur batteries. Adv. Mater. 27, 6021–6028 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. F. Wu, J. Li, Y. Tian, Y. Su, J. Wang, W. Yang, N. Li, S. Chen, L. Bao, 3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium–sulfur batteries. Sci. Rep. 5, 13340 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Wei, H. Zhang, Y. Huang, W. Wang, Y. Xia, Z. Yu, Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium–sulfur batteries. Energy Environ. Sci. 4(3), 736–740 (2011)

    Article  CAS  Google Scholar 

  42. P. Rajkumar, K. Diwakar, R.M. Gnanamuthu, R. Subadevi, M. Sivakumar, Investigations on partially reduced graphene oxide capped sulfur/polyaniline composite as positive electrode material for lithium sulfur battery. Mater. Res. Express. 6, 094005 (2019)

    Article  CAS  Google Scholar 

  43. Y. Zhang, Y. Zhao, A. Konarov, D. Gosselink, H.G. Soboleski, P. Chen, A novel nano-sulfur/polypyrrole/graphene nanocomposite cathode with a dual-layered structure for lithium rechargeable batteries. J. Power Sources. 241, 517–521 (2013)

    Article  CAS  Google Scholar 

  44. G. Radhika, R. Subadevi, K. Krishnaveni, W.R. Liu, M. Sivakumar, Synthesis and electrochemical performance of PEG-MnO2–sulfur composites cathode materials for lithium–sulfur batteries. J. Nano Sci. Nano Technol. 18(1), 127–131 (2018)

    Article  CAS  Google Scholar 

  45. G. Xu, B. Ding, L. Shen, P. Nie, J. Han, X. Zhang, Sulfur embedded in metal organic framework-derived hierarchically porous carbon nano plates for high performance lithium–sulfur battery. J. Mater. Chem. A. 1(14), 4490–4496 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors from Alagappa University acknowledge the financial support by DST-SERB, New Delhi under the Physical sciences, grant sanctioned vide EMR/2016/006302. Also, all the authors gratefully acknowledge for extending the analytical facilities in the Department of Physics, Alagappa University under the PURSE and FIST programme, sponsored by Department of Science and Technology (DST), BSR of University Grants Commission (UGC), New Delhi, Govt. of India and Ministry of Human Resource Development RUSA- Phase 2.0 grant sanctioned vide Lt.No.F-24-51/2014 U Policy (TNMulti Gen), Dept. of Education, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Marimuthu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaiappan, K., Rengapillai, S. & Marimuthu, S. Clout of carbon in polyacrylonitrile/sulfur composite cathode via solution processing technique for lithium-sulfur batteries. J Porous Mater 27, 1837–1845 (2020). https://doi.org/10.1007/s10934-020-00963-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00963-4

Keywords

Navigation