Skip to main content

Advertisement

Log in

Clinal and Allometric Variation in the Skull of Sexually Dimorphic Opossums

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Three species of sexually-dimorphic opossums are broadly distributed across South America: the habitat generalist Didelphis albiventris, the Atlantic forest-dweller D. aurita, and the Amazonian forest-dweller D. marsupialis. We used 2D geometric morphometrics to quantify skull size and shape variation in the three opossum species and test the hypothesis that degrees of sexual dimorphism and morphological variation should follow a cline across different South American environments. We first detected a strong impact of allometry on skull shape variation especially in males of the three species that tend to show stronger bite force, which is thought to be related to sexual selection. The degree of sexual dimorphism varies in relation to environmental seasonality. The skull of the plastic species, D. albiventris, showed the strongest ecogeographical pattern, showing conformity to Bergmann’s rule. In this species, size increase and shape changes are associated with colder climates and stronger bite force. Skulls of D. marsupialis are moderately impacted by climate, following productivity patterns of tropical regions associated with fruit availability. The most territorial species, D. aurita, has the strongest allometric effect and shows no clinal variation. Our results also support a degree of evolutionary constraint on the skull morphology of the three South American opossums. The black-eared opossums clade exhibits a weak (D. marsupialis) or nonexistent (D. aurita) association between skull morphology and climate. Skull shape changes of D. aurita are allometrically driven while those of the white-eared opossums clade (D. albiventris) vary in relation to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams DC, Collyer ML, Kaliontzopoulou A (2018) Geomorph: software for geometric morphometric analyses. R package version 3.0.6. Available at: https://cran.r-project.org/package=geomorph

  • Adams DC, Rohlf FJ, Slice DE (2013) A field comes of age: geometric morphometrics in the 21st century. Hystrix 24:7-14

    Google Scholar 

  • Astúa D (2010) Cranial sexual dimorphism in New World marsupials and a test of Rensch's rule in Didelphidae. J Mammal 91:1011-1024

    Google Scholar 

  • Astúa D (2015) Morphometrics of the largest New World marsupials, opossums of the genus Didelphis Didelphimorphia, Didelphidae. Oecol Aust 19:117-142

    Google Scholar 

  • Astúa de Moraes D, Hingst-Zaher E, Marcus LF, Cerqueira R (2000) A geometric morphometric analysis of cranial and mandibular shape variation in didelphid marsupials. Hystrix 11:115-130

    Google Scholar 

  • Begg CM, Begg KS, Du Toit JT, Mills MGL (2003) Sexual and seasonal variation in the diet and foraging behaviour of a sexually dimorphic carnivore, the honey badger (Mellivora capensis). J Zool 260:301-316

    Google Scholar 

  • Belk MC, Houston DD (2002) Bergmann’s Rule in ectotherms: a test using freshwater fishes. Am Nat 160:803-808

    PubMed  Google Scholar 

  • Bergmann C (1847) Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gottinger Studien 3:595-708

    Google Scholar 

  • Birks JDS, Dunstone N (1985) Sex-related differences in the diet of the mink Mustela vison. Ecography 8:245-252

    Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, New York

    Google Scholar 

  • Bubadué JM, Cáceres NC, Carvalho RS, Meloro C (2016) Ecogeographical variation in skull shape of South American canids: abiotic or biotic processes? Evol Biol 43:145-149

    Google Scholar 

  • Cáceres N (2002) Food habits and seed dispersal by the white-eared opossum, Didelphis albiventris, in southern Brazil. Stud Neotrop Fauna E 37:97-104

    Google Scholar 

  • Cáceres NC (2003) Use of the space by the opossum Didelphis aurita Wied-Newied Mammalia, Marsupialia in a mixed forest fragment of southern Brazil. Rev Bras Zool 20:315-322

    Google Scholar 

  • Cáceres NC, Machado AF (2013) Spatial, dietary and temporal niche dimensions in ecological segregation of two sympatric, congeneric marsupial species. Open Ecol J 6:10-23

    Google Scholar 

  • Cáceres N, Meloro C, Carotenuto F, Passaro F, Sponchiado J, Melo GL, Raia P. (2014) Ecogeographical variation in skull shape of capuchin monkeys. J Biogeogr 41:501-512

    Google Scholar 

  • Cáceres NC, Monteiro-Filho ELA (2001) Food habits, home range and activity of Didelphis aurita (Mammalia, Marsupialia) in a forest fragment of southern Brazil. Stud Neotrop Fauna E 36:85-92

  • Cáceres NC, Weber MM, Melo GL, Meloro C, Sponchiado J, Carvalho RS, Bubadué JM (2016) Which factors determine spatial segregation in the South American opossums Didelphis aurita and D. albiventris? An ecological niche modelling and geometric morphometrics approach. PLoS One 11:e0157723

    PubMed  PubMed Central  Google Scholar 

  • Cantor M, Ferreira AL, Silva WR, Setz EZF (2010) Potential seed dispersal by Didelphis albiventris Marsupialia, Didelphidae in highly disturbed environment. Biota Neotrop 10:45-51

    Google Scholar 

  • Cardini A (2014) Missing the third dimension in geometric morphometrics: how to assess if 2D images really are a good proxy for 3D structures? Hystrix 25:73-81

    Google Scholar 

  • Cardini A (2016) Lost in the other half: improving accuracy in geometric morphometric analyses of one side of bilaterally symmetric structures. Syst Biol 65:1096-1106

    PubMed  Google Scholar 

  • Cardini A, Jansson AU, Elton S (2007) Ecomorphology of vervet monkeys: a geometric morphometric approach to the study of clinal variation. J Biogeogr 34:1663-1678

  • Cardini A, Polly PD (2013) Larger mammals have longer faces because of size-related constraints on skull form. Nat Commun 4: 2458

    PubMed  Google Scholar 

  • Caumul R, Polly PD (2005) Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution 59: 2460-2472

    PubMed  Google Scholar 

  • Ceotto P, Finotti R, Santori R, Cerqueira R (2009) Diet variation of the marsupials Didelphis aurita and Philander frenatus (Didelphimorphia, Didelphidae) in a rural area of Rio de Janeiro state, Brazil. Mastozool Neotrop 16:49-58

    Google Scholar 

  • Colles A, Liow LH, Prinzing A (2009) Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol Lett 12:849-63

    PubMed  PubMed Central  Google Scholar 

  • Costa LP, Patton JL (2006) Diversidade e limites geográficos e sistemáticos de marsupiais brasileiros. In: Cáceres NC, Monteiro-Filho ELA (eds) Os Marsupiais do Brasil: Biologia, Ecologia e Evolução. Editora UFMS, Campo Grande, pp 321-341

    Google Scholar 

  • Cozzuol MA, Goin F, de Los Reyes M, Ranzi A (2006) The oldest species of Didelphis (Mammalia, Marsupialia, Didelphidae), from the late Miocene of Amazonia. J Mammal 87:663-667

    Google Scholar 

  • Damasceno EM, Astúa D (2016) Geographic variation in cranial morphology of the water opossum Chironectes minimus Didelphimorphia, Didelphidae. Mammal Biol 81:380-392

  • Damasceno EM, Hingst-Zaher E, Astúa D (2013) Bite force and encephalization in the Canidae Mammalia: Carnivora. J Zool 290:246-254

    Google Scholar 

  • Dias CAR, Perini FA (2018) Biogeography and early emergence of the genus Didelphis (Didelphimorphia, Mammalia). Zool Scr 2018:1-10

    Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Global Ecol Biogeogr 12:53-64

    Google Scholar 

  • dos Reis SF, Duarte LC, Monteiro LR, Zuben FJV (2002) Geographic variation in cranial morphology in Thrichomys apereoides Rodentia: Echimyidae: II. Geographic units, morphological discontinuities, and sampling gaps. J Mammal 83:345-353

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for Principal Coordinate Analysis of Neighbour Matrices PCNM. Ecol Model 196:483-493

    Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical Shape Analysis. Wiley, New York

    Google Scholar 

  • Fleming TH, Breitwisch R, Whitesides GH (1987) Patterns of tropical vertebrate frugivore diversity. Annu Rev Ecol Syst 18:91-109

    Google Scholar 

  • Gardner A (2007) Mammals of South America, Vol. 1. Marsupials, Xenarthrans, Shrews, and Bats. University of Chicago Press, Chicago

  • Gohli J, Voje KL (2016) An interspecific assessment of Bergmann's rule in 22 mammalian families. Evol Biol 16:222

    Google Scholar 

  • Hendges CD, Bubadué JM, Cáceres NC (2016) Environment and space as drivers of variation in skull shape in two widely distributed South American Tayassuidae, Pecari tajacu and Tayassu pecari Mammalia: Cetartiodactyla. Biol J Linnean Soc 119:785-798

    Google Scholar 

  • Hendges CD, Patterson BD, Cáceres NC, Gasparini GM, Ross CF (2019) Skull shape and the demands of feeding: a biomechanical study of peccaries (Mammalia, Cetartiodactyla). J Mammal 100:475-486

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high-resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965-1978

    Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187-211

    Google Scholar 

  • Julien-Laferrière D, Atramentowicz M (1990) Feeding and reproduction of three didelphid marsupials in two Neotropical forests (French Guiana). Biotropica 22:404-415

    Google Scholar 

  • Kelley DB (1988). Sexually dimorphic behaviors. Annu Rev Neurosci 11:225-251

    CAS  PubMed  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353-357

    PubMed  Google Scholar 

  • Koyabu D,Werneburg I, Morimoto N, Zollikofer CPE, Forasiepi AM, Endo H, Kimura J, Ohdachi SD, Son NT, Sánchez-Villagra MR (2014) Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size. Nat Commun 5:3625

    PubMed  PubMed Central  Google Scholar 

  • Maestri R, Luza AL, Barros LD, Hartz SM, Ferrari A, Freitas TRO, Duarte LDS(2016) Geographical variation of body size in sigmodontine rodents depends on both environment and phylogenetic composition of communities. J Biogeogr 43:1192-1202

    Google Scholar 

  • Magnus LZ, Machado RF, Cáceres NC (2017) Comparative ecogeographical variation in skull size and shape of two species of woolly opossums genus Caluromys. Zool Anz 267:139-150

    Google Scholar 

  • Magnus LZ, Machado RF, Cáceres NC (2018a) The environment is a major driver of shape and size variation in widespread extant xenarthrans. Mammal Biol 89: 52-61

    Google Scholar 

  • Magnus LZ, Machado RF, Cáceres NC (2018b) Ecogeography of South-American Rodentia and Lagomorpha (Mammalia, Glires): roles of size, environment, and geography on skull shape. Zool Anz 277:33-41

    Google Scholar 

  • McLean ML, McCay TS, Lovallo MJ (2005) Influence of age, sex and time of year on diet of the bobcat (Lynx rufus) in Pennsylvania. Am Mid Nat, 153(2):450-453

    Google Scholar 

  • Medina AI, Martí DA, Bidau CJ (2007) Subterranean rodents of the genus Ctenomys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann's rule. J Biogeogr 34:1439-1454

    Google Scholar 

  • Meiri S, Yom-Tov Y, Geffen E (2007) What determines conformity to Bergmann’s rule? Glob Ecol Biogeogr 16:788-794

    Google Scholar 

  • Meloro C, Cáceres N, Carotenuto F, Passaro F, Sponchiado J, Melo GL, Raia P (2014a) Ecogeographical variation in skull morphometry of howler monkeys Primates: Atelidae. Zool Anz 253:345-359

    Google Scholar 

  • Meloro C, Cáceres N, Carotenuto F, Sponchiado J, Melo GL, Passaro F, Raia F (2014b) In and out the Amazonia: evolutionary ecomorphology in howler and capuchin monkeys. Evol Biol 41:38-51

    Google Scholar 

  • Meloro C, Raia P, Piras P, Barbera C, O’Higgins P (2008) The shape of the mandibular corpus in large fissiped carnivores: allometry, function and phylogeny. Zool J Linnean Soc 154:832-845

    Google Scholar 

  • Mendel SM, Vieira MV, Cerqueira R (2008) Precipitation, litterfall, and the dynamics of density and biomass in the black-eared opossum, Didelphis aurita. J Mammal 89:159-167

    Google Scholar 

  • Monteiro LR, Duarte LC, dos Reis SF (2003) Environmental correlates of geographical variation in skull and mandible shape of the punaré rat Thrichomys apereoides (Rodentia: Echimyidae). J Zool 261:47-57

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara RB (2012) Vegan: community ecology package. R package version 2.0-5. Available at: http://cran.rproject.org/web/packages/vegan/index.html

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362-2367

    PubMed  Google Scholar 

  • Piras P, Salvi D, Ferrara G, Maiorino L, Delfino M, Pedde L, Kotsakis T (2011) The role of post-natal ontogeny in the evolution of phenotypic diversity in Podarcis lizards. J Evol Biol 24: 2405-2720

    Google Scholar 

  • Post E, Langvatn R, Forchhammer MC, Stenseth NC (1999) Environmental variation shapes sexual dimorphism in red deer. Proc Natl Acad Sci USA 96:4467-4471

    CAS  PubMed  Google Scholar 

  • Rensch B (1950) Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonn Zool 1:58-69

    Google Scholar 

  • Rohlf FJ (2015) The tps series of software. Hystrix 26:9-12

    Google Scholar 

  • Rossi RV, Carmignotto AP, Oliveira MVB, Miranda CL, Cherem JJ (2012) Diversidade e diagnose de espécies de marsupiais brasileiras. In: Cáceres NC (ed) Os marsupiais do Brasil: biologia, ecologia e conservação. Editora UFMS, Campo Grande, pp 23-74

    Google Scholar 

  • Ryser J (1992) The mating system and male mating success of the Virginia opossum Didelphis virginiana in Florida. J Zool 228:127-139

    Google Scholar 

  • Sansalone G, Colangelo P, Kotsakis T, Loy A, Castiglia R, Bannikova AA, Zemlemerova ED, Piras P (2018) Influence of evolutionary allometry on rates of morphological evolution and disparity in strictly subterranean moles (Talpinae, Talpidae, Lipotyphla, Mammalia). J Mammal Evol 25:1-14

    Google Scholar 

  • Sansalone G, Kotsakis T, Piras P (2015) Talpa fossilis or Talpa europaea? Using geometric morphometrics and allometric trajectories of humeral moles remains from Hungary to answer a taxonomic debate. Palaeontol Electron 18:1-17

    Google Scholar 

  • Schiaffini MI (2016) A test of the Resource's and Bergmann's rules in a widely distributed small carnivore from southern South America, Conepatus chinga (Molina, 1782) (Carnivora: Mephitidae). Mammal Biol 81: 73-81

    Google Scholar 

  • Schiaffini MI, Segura V, Prevosti FJ (2019) Geographic variation in skull shape and size of the Pampas fox Lycalopex gymnocercus (Carnivora: Canidae) in Argentina. Mammal Biol 97:50-58

    Google Scholar 

  • Silva AR, Forneck ED, Bordignon SAL, Cademartori CV (2014) Diet of Didelphis albiventris Lund, 1840 Didelphimorphia, Didelphidae in two periurban areas in southern Brazil. Acta Sci 36:241-247

    Google Scholar 

  • Stumpp R, Fuzessy L, Paglia AP (2018) Environment drivers acting on rodent rapid morphological change. J Mammal Evol 25(1): 131-140

    Google Scholar 

  • Sunquist ME, Austad SN, Sunquist F (1987) Movement patterns and home range in the common opossum (Didelphis marsupialis). J Mammal 68:173-176

    Google Scholar 

  • Ungar PS (2010) Mammal Teeth: Origin, Evolution, and Diversity. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Van Valkenburgh BV (1991) Iterative evolution of hypercarnivory in canids Mammalia: Carnivora: evolutionary interactions among sympatric predators. Paleobiology 17:340-362

    Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric Morphometrics for Biologists: A Primer. Academic Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

We would like to thank Diego Astúa, Eliécer Gutiérrez, Geruza Melo, and Cristian Dambros for reviewing this manuscript prior to submission. We are grateful to curators and staff of the MCNFZB (M.M. de A. Jardim), MN (J.A. de Oliveira and S.M. Vaz), MPEG (S.M. Aguiar and J.S. Silva Jr.), MHNCI (V. Abilhoa and S.C. Pereira), UFSC (M.E. Graipel), MACN (D.A. Flores and S. Lucero), and MZUSP (M. De Vivo and J.G. Barros) for granting access to specimens and providing support during our visits to their institutions. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 for JMB, CDH and TFB. JMB was also supported by CAPES 194 sandwich PhD program/Process number 88881.189949/2018-01. CM was supported by the British Research Council under the Research Links program (Grant No. 127432108). NCC has a research fellowship in Ecology, granted by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamile Bubadué.

Electronic supplementary material

Supplementary Data SD1

List of 413 Didelphis specimens used for morphometric analyses, with data on species, museum, record number from museum, sex, geographical coordinates (latitude and longitude in decimal degrees), centroid size (CS), Natural Logarithms of Centroid Size (LnCS), Procrustes Coordinates (C#). Averaged values are bellow each correspondent set of specimens that were added to that average. MCNFZB: Museu de Ciências Naturais da Fundação Zoobotânica do Rio Grande do Sul, MN: Museu Nacional (PI and CA is for specimens in the museum with no record aside for the collector number), MPEG: Museu Paraense Emílio Goeldi, MHNCI = Museu de História Natural Capão da Imbuia, UFSC: Coleção Científica do Laboratório de Mamíferos Aquáticos da UFSC, MACN: Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, MZUSP: Museu de Zoologia da Universidade de São Paulo (XLSX 827 kb)

Supplementary Data SD2

Sexual size (SSD) and shape dimorphism (SShD) data separated by species. Central coordinates for each grid are given in decimal degrees. Mean male size (MSize) and female size (FSize) for each grid was calculated by averaging the specimens present in each grid. (DOCX 22 kb)

Supplementary Materials

(PDF 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bubadué, J., Meloro, C., Hendges, C. et al. Clinal and Allometric Variation in the Skull of Sexually Dimorphic Opossums. J Mammal Evol 28, 185–198 (2021). https://doi.org/10.1007/s10914-020-09513-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-020-09513-w

Keywords

Navigation