Skip to main content
Log in

Current Trends in the Development of Normally-OFF GaN-on-Si Power Transistors and Power Modules: A Review

  • International Electron Devices and Materials Symposium 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gallium nitride (GaN) power transistors have attracted significant interest in the power electronics industry over the past decade as the next-generation power semiconductor devices. GaN power transistors are suitable for high power and high frequency applications due to their higher electron mobility, temperature tolerance, electrical conductivity, critical breakdown electric field, and breakdown voltage compared to the conventional silicon-based transistors and other wide bandgap (WBG) power transistors. In particular, GaN-on-silicon (GaN-on-Si) technology has opened up the possibility of manufacturing high-performance, low-cost WBG power devices in silicon-compatible fabrication facilities. The first GaN power transistor structure to be developed was the normally-ON depletion mode (D-mode) device. It relies on the highly mobile two-dimension electron gas (2DEG) at the GaN/AlGaN epitaxial layers’ interface to provide very low on-resistance. The normally-OFF enhancement mode (E-mode) GaN power transistor soon became available by controlling the 2DEG using various gate structures. This paper provides a review of the developments of GaN power transistors followed by a survey on current state-of-the-art GaN power technologies and applications, including comparisons between GaN growth substrates and developments of enhancement mode (E-mode) device structures and their process techniques. Moreover, developments of power module designs are also addressed, including gate driver designs and their requirements, and packaging techniques for power transistors and power modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Hudgins and R.W. Doncker, IEEE Ind. Appl. Mag. 18, 18 (2012).

    Google Scholar 

  2. R. Chokhawala, B. Danielsson, and L. Angquist, in ISPSD’01 (2001) pp. 205–208.

  3. J.S. Yu, W.J. Zhang, and W.T. Ng, in ISPSD’14 (2014) pp. 205–208.

  4. Y. Zhang, T. Palacios, and K.H. Teo, in ISPSD’16 (2016), pp. 107–110. https://doi.org/10.1109/ispsd.2016.7520789.

  5. J.L. Hudgins, G.S. Simin, and M.A. Khan, in PESC (2002), pp. 1747–1752.

  6. U.K. Mishra, P. Parikh, and Y.F. Wu, Proc. IEEE (2002). https://doi.org/10.1109/JPROC.2002.1021567.

    Article  Google Scholar 

  7. M. Meneghini, G. Meneghesso, and E. Zanoni, Power GaN Devices: Materials, Applications and Reliabilitiy, 1st ed. (Cham: Springer, 2017).

    Google Scholar 

  8. T.P. Chow and R. Tyagi, IEEE Trans. Electron Devices (1994). https://doi.org/10.1109/16.297751.

    Article  Google Scholar 

  9. H. Umezawa, Mater. Sci. Semicond. Proc. (2018). https://doi.org/10.1016/j.mssp.2018.01.007.

    Article  Google Scholar 

  10. M. Rais-Zadeh, V.J. Gokhale, A. Ansari, M. Faucher, D. Théron, Y. Cordier, and L. Buchaillot, J Microelectromech. Syst. (2014). https://doi.org/10.1109/JMEMS.2014.2352617.

    Article  Google Scholar 

  11. R.A. Khadar, C. Liu, L. Zhang, P. Xiang, K. Cheng, and E. Matioli, IEEE Electron Device Lett. (2018). https://doi.org/10.1109/LED.2018.2793669.

    Article  Google Scholar 

  12. Y. Wang, G. Lyu, J. Wei, Z. Zheng, J. He, J. Lei, and K.J. Chen, IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/tie.2019.2959512.

    Article  Google Scholar 

  13. M. Ghaffari and A.A. Orouji, Phys. E Low Dimens. Syst. Nanostructures (2015). https://doi.org/10.1016/j.physe.2015.07.016.

    Article  Google Scholar 

  14. M. Ghaffari, A.A. Orouji, and M. Valinataj, J. Korean Phys. Soc. (2017). https://doi.org/10.3938/jkps.71.1027.

    Article  Google Scholar 

  15. T. Boles, in AIP Conference Proceedings (2018), pp. 1934.

  16. P. Kruszewski, P. Prystawko, I. Kasalynas, A. Nowakowska-Siwinska, M. Krysko, J. Plesiewicz, J. Smalc-Koziorowska, R. Dwilinski, M. Zajac, R. Kucharski, and M. Leszczynski, Semicond. Sci. Technol. (2014). https://doi.org/10.1088/0268-1242/29/7/075004.

    Article  Google Scholar 

  17. H. Nie, Q. Diduck, B. Alvarez, A.P. Edwards, B.M. Kayes, M. Zhang, G. Ye, T. Prunty, D. Bour, and I.C. Kizilyalli, IEEE Electron Devices Lett. (2014). https://doi.org/10.1109/LED.2014.2339197.

    Article  Google Scholar 

  18. T. Oikawa, Y. Saijo, S. Kato, T. Mishima, and T. Nakamura, Nuclear Inst. Methods Phys. Res. B (2015). https://doi.org/10.1016/j.nimb.2015.07.095.

    Article  Google Scholar 

  19. K. Patel, GaN is Great, True GaN™ is Better! (Avogy Technical paper, 2016) https://nexgenpowersystems.com/wp-content/uploads/2016/06/GaN-is-Great-v4.pdf. Accessed 26 Dec 2019.

  20. K.J. Chen, O. Haberlen, A. Lidow, C.L. Tsai, T. Ueda, Y. Uemoto, and Y. Wu, IEEE Trans. Electron Devices (2017). https://doi.org/10.1109/TED.2017.2657579.

    Article  Google Scholar 

  21. L. Liu and J.H. Edgar, Mater. Sci. Eng. R (2002). https://doi.org/10.1016/S0927-796X(02)00008-6.

    Article  Google Scholar 

  22. D. Visalli, M. Van Hove, J. Derluyn, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, Phys. Status Solidi C (2009). https://doi.org/10.1002/pssc.200880835.

    Article  Google Scholar 

  23. T. Egawa, in IEDM (2012), pp. 1–4.

  24. P.J. Lin, C.H. Tien, T.Y. Wang, C.L. Chen, S.L. Ou, B.C. Chung, and D.S. Wuu, Crystals (2017). https://doi.org/10.3390/cryst7050134.

    Article  Google Scholar 

  25. J.T. Chen, J. Bergsten, J. Lu, E. Janzén, M. Thorsell, L. Hultman, N. Rorsman, and O. Kordina, Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5042049.

    Article  Google Scholar 

  26. C. Jiang, T. Liu, C. Du, X. Huang, M. Liu, Z. Zhao, L. Li, X. Pu, J. Zhai, W. Hu, and Z.L. Wang, Nanotechnology (2017). https://doi.org/10.1088/1361-6528/aa8a5a.

    Article  Google Scholar 

  27. G.J. Syaranamual, W.A. Sasangka, R.I. Made, S. Arulkumaran, G.I. Ng, S.C. Foo, C.L. Gan, and C.V. Thompson, Microelectron. Reliab. (2016). https://doi.org/10.1016/j.microrel.2016.07.012.

    Article  Google Scholar 

  28. M.A. Khan, T.N. Kuznia, A.R. Bhattaraia, and D.T. Olson, Appl. Phys. Lett. 62, 1786 (1993).

    CAS  Google Scholar 

  29. M. Khan, A.R. Bhattarai, J. Kuznia, and D. Olson, Appl. Phys. Lett. 63, 1214 (1993).

    CAS  Google Scholar 

  30. T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, Jpn. J Appl. Phys. (1980). https://doi.org/10.1143/JJAP.19.L225.

    Article  Google Scholar 

  31. W. Choi, O. Seok, H. Ryu, H.Y. Cha, and K.S. Seo, IEEE Electron Devices Lett. (2014). https://doi.org/10.1109/LED.2013.2293579.

    Article  Google Scholar 

  32. T.L. Wu, D. Marcon, B. De Jaeger, M. Van Hove, B. Bakeroot, S. Stoffels, G. Groeseneken, S. Decoutere, and R. Roelofs, in IRPS (2015). https://doi.org/10.1109/irps.2015.7112769.

  33. Y. Cai, Y. Zhou, K.J. Chen, and K.M. Lau, in DRC (2005). https://doi.org/10.1109/drc.2005.1553110.

  34. S. Kaneko, M. Kuroda, M. Yanagihara, A. Ikoshi, H. Okita, T. Morita, K. Tanaka, M. Hikita, Y. Uemoto, S. Takahashi, and T. Ueda, in ISPSD (2015). https://doi.org/10.1109/ispsd.2015.7123384.

  35. G. Kurt, M.E. Gulseren, G. Salkim, S. Ural, O.A. Kayal, M. Ozturk, B. Butun, M. Kabak, and E. Ozbay, IEEE J. Electron Devices Soc. (2019). https://doi.org/10.1109/JEDS.2019.2899387.

    Article  Google Scholar 

  36. Z. Gao, M.F. Romero, M.Á. Pampillón, E. San Andrés, and F. Calle, IEEE Trans. Electron Devices (2016). https://doi.org/10.1109/ted.2016.2564301.

  37. H.C. Chiu, J.H. Wu, C.W. Yang, F.H. Huang, and H.L. Kao, IEEE Electron Devices Lett. (2012). https://doi.org/10.1109/LED.2012.2194980.

    Article  Google Scholar 

  38. D. Cao, F. Liu, X. Shi, H. Shi, L. Zheng, L. Shen, X. Cheng, Y. Yu, X. Li, and W. Shi, J. Mater. Sci. Materi. Electron. (2018). https://doi.org/10.1007/s10854-018-8757-1.

    Article  Google Scholar 

  39. K. Nakamura, H. Hanawa, and K. Horio, IEEE Trans. Device Mater. Reliab. (2019). https://doi.org/10.1109/TDMR.2019.2903213.

    Article  Google Scholar 

  40. F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, Materials (2019). https://doi.org/10.3390/ma12101599.

    Article  Google Scholar 

  41. S. Lin, M. Wang, F. Sang, M. Tao, C.P. Wen, B. Xie, M. Yu, J. Wang, Y. Hao, W. Wu, J. Xu, K. Cheng, and B. Shen, IEEE Electron Devices Lett. (2016). https://doi.org/10.1109/LED.2016.2533422.

    Article  Google Scholar 

  42. H. Transistor, J. Wei, S. Liu, B. Li, X. Tang, Y. Lu, C. Liu, M. Hua, Z. Zhang, G. Tang, K.J. Chen, and A. Abstract, IEEE Electron Devices Lett. (2015). https://doi.org/10.1109/LED.2015.2489228.

    Article  Google Scholar 

  43. Y. Zheng, F. Yang, L. He, Y. Yao, Z. Shen, G. Zhou, Z. He, Y. Ni, D. Zhou, J. Zhong, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, IEEE Electron Devices Lett. (2016). https://doi.org/10.1109/led.2016.2590821.

  44. Y. Uemoto, T. Morita, A. Ikoshi, H. Umeda, H. Matsuo, J. Shimizu, M. Hikita, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, in IEDM (2009). https://doi.org/10.1109/iedm.2009.5424397.

  45. Y. Li, Y. Guo, K. Zhang, X. Zou, J. Wang, Y. Kong, T. Chen, C. Jiang, G. Fang, C. Liu, and L. Liao, IEEE Trans. Electron Devices (2017). https://doi.org/10.1109/TED.2017.2712782.

    Article  Google Scholar 

  46. Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, IEEE Trans. Electron Devices (2007). https://doi.org/10.1109/TED.2007.908601.

    Article  Google Scholar 

  47. H. Okita, M. Hikita, A. Nishio, T. Sato, K. Matsunaga, H. Matsuo, M. Mannoh, and Y. Uemoto, in ISPSD (2016). https://doi.org/10.1109/ispsd.2016.7520768.

  48. R.M. Abdul Khadar, C. Liu, R. Soleimanzadeh, and E. Matioli, IEEE Electron Devices Lett. (2019). https://doi.org/10.1109/led.2019.2894177.

  49. D. Biswas, N. Torii, K. Yamamoto, and T. Egawa, Electron. Lett. (2019). https://doi.org/10.1049/el.2018.8118.

    Article  Google Scholar 

  50. Y. Zhang, M. Sun, J. Perozek, Z. Liu, A. Zubair, D. Piedra, N. Chowdhury, X. Gao, K. Shepard, and T. Palacios, IEEE Electron Devices Lett. (2019). https://doi.org/10.1109/LED.2018.2880306.

    Article  Google Scholar 

  51. J.H. Lee, K.S. Im, H.S. Kang, J.H. Lee, S.J. Chang, S. Cristoloveanu, and M. Bawedin, Solid State Electron. (2014). https://doi.org/10.1016/j.sse.2014.04.033.

    Article  Google Scholar 

  52. Y. Feng, H. Wei, S. Yang, H. Zhang, S. Kong, G. Zhao, and X. Liu, CrystEngComm (2014). https://doi.org/10.1039/c4ce01164c.

    Article  Google Scholar 

  53. K. Wang, M. Li, Z. Yang, J. Wu, and T. Yu, CrystEngComm (2019). https://doi.org/10.1039/C9CE00744J.

    Article  Google Scholar 

  54. L. Chen, X. Ma, J. Zhu, B. Hou, Q. Zhu, M. Zhang, L. Yang, J. Yin, J. Wu, and Y. Hao, IEEE Trans. Device Mater. Reliab. (2018). https://doi.org/10.1109/TDMR.2018.2847664.

    Article  Google Scholar 

  55. H. Yu and T. Duan, Gallium Nitride Power Devices, 1st ed. (Singapore: Jenny Stanford, 2017).

    Google Scholar 

  56. M. Hua, Z. Zhang, Q. Qian, J. Wei, Q. Bao, G. Tang, and K. J. Chen, in ISPSD (2017). https://doi.org/10.23919/ispsd.2017.7988900.

  57. Z. Fan, S.N. Mohammad, W. Kim, Ö. Aktas, A.E. Botchkarev, and H. Morkoç, Appl. Phys. Lett. (1996). https://doi.org/10.1063/1.115901.

    Article  Google Scholar 

  58. C.S. Fang, M.N. Chang, J.T. Hsu, G.T. Chen, C.C. Pan, S.B. Huang, J.I. Chyi, and T.C. Huang, Appl. Phys. Lett. (2004). https://doi.org/10.1063/1.1805199.

    Article  Google Scholar 

  59. T. Yoshida and T. Egawa, Phys. Status Solidi A (2018). https://doi.org/10.1002/pssa.201700825.

    Article  Google Scholar 

  60. L. Wang, Ohmic metallizations to aluminum gallium nitride/gallium nitride high electron mobility transistors: Electrical and microstructural studies (ProQuest, UMI Dissertations Publishing, 2008). https://search.proquest.com/docview/304604114. Accessed 23 Dec 2019.

  61. I. Boturchuk, T. Walter, B. Julsgaard, G. Khatibi, S. Schwarz, M. Stöger-Pollach, K. Pedersen, and V.N. Popok, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02167-2.

    Article  Google Scholar 

  62. D.F. Brown, K. Shinohara, A.L. Corrion, R. Chu, A. Williams, J.C. Wong, I. Alvarado-Rodriguez, R. Grabar, M. Johnson, C.M. Butler, D. Santos, S.D. Burnham, J.F. Robinson, D. Zehnder, S.J. Kim, T.C. Oh, and M. Micovic, IEEE Electron Devices Lett. (2013). https://doi.org/10.1109/LED.2013.2273172.

    Article  Google Scholar 

  63. H.C. Chiu, Y.S. Chang, B.H. Li, H.C. Wang, H.L. Kao, F.T. Chien, C.-W. Hu, and R. Xuan, IEEE Trans. Electron Devices (2018). https://doi.org/10.1109/TED.2018.2871689.

    Article  Google Scholar 

  64. H.C. Chiu, Y.S. Chang, B.H. Li, H.C. Wang, H.L. Kao, C.W. Hu, and R. Xuan, IEEE J. Electron Devices Soc. (2018). https://doi.org/10.1109/JEDS.2018.2789908.

    Article  Google Scholar 

  65. Y. Zhou, Y. Zhong, H. Gao, S. Dai, J. He, M. Feng, Y. Zhao, Q. Sun, A. Dingsun, and H. Yang, IEEE J. Electron Devices Soc. (2017). https://doi.org/10.1109/JEDS.2017.2725320.

    Article  Google Scholar 

  66. Q. Li, Q. Zhou, S. Gao, X. Liu, and H. Wang, Solid State Electron. (2018). https://doi.org/10.1016/j.sse.2018.05.011.

    Article  Google Scholar 

  67. J. Zhang, X. Kang, X. Wang, S. Huang, C. Chen, K. Wei, Y. Zheng, Q. Zhou, W. Chen, B. Zhang, and X. Liu, IEEE Electron Devices Lett. (2018). https://doi.org/10.1109/LED.2018.2822659.

    Article  Google Scholar 

  68. C.H. Lee, D. Billings, and Y. Wen, in PCIM Asia (2015), pp. 1–8.

  69. A. Bajwa, Y. Qin, J. Wilde, R. Reiner, P. Waltereit, and R. Quay, in ECTC (2014), pp. 2181–2188.

  70. S. Chellappan, Design Considerations of GaN Devices for Improving Power-Converter Efficiency and Density (Texas Instrument 2017) http://www.ti.com/lit/wp/slyy124/slyy124.pdf. Accessed 26 Dec 2019.

  71. A. Lidow, M. de Rooij, J. Strydom, D. Reusch, and J. Glaser, GaN Transistors for Efficient Power Conversion, 3rd ed. (New York: Wiley, 2019).

    Google Scholar 

  72. J. Yu, W.J. Zhang, A. Shorten, R. Li, and W.T. Ng, in ISPSD (2018). https://doi.org/10.1109/ispsd.2018.8393608.

  73. A. Lidow, J. Strydom, M. de Rooij, and D. Reusch, GaN Transistors for Efficient Power Conversion, 2nd ed. (New York: Wiley, 2014).

    Google Scholar 

  74. J. Yu, A Smart Gate Driver IC for GaN Power Transistors (University of Toronto, 2019). https://tspace.library.utoronto.ca/bitstream/1807/97760/3/Yu_Jingshu_%20_201911_PhD_thesis.pdf. Accessed 26 Dec 2019.

  75. E.A. Jones, F.F. Wang, and D. Costinett, IEEE J. Emerg. Select. Topics Power Electron. (2016). https://doi.org/10.1109/JESTPE.2016.2582685.

    Article  Google Scholar 

  76. Altera Corporation, Minimizing Ground Bounce & VCC Sag (Altera Co., 2001) https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp_grndbnce.pdf. Accessed 23 Dec 2019.

  77. ON Semiconductor, AN-640 Understanding and Minimizing Ground Bounce (Fair child semiconductor Co., 2003). https://www.onsemi.com/pub/Collateral/AN-640.pdf.pdf. Accessed 23 Dec 2019.

  78. W. Zhang, X. Huang, F.C. Lee, and Q. Li, in APEC (2014). https://doi.org/10.1109/apec.2014.6803503.

  79. Taxas Instruments, LM5113 80V, 1.2A, 5A, Half Bridge GaN Driver (NRND) (Texas Instruments, 2018) https://www.mouser.ec/datasheet/2/405/lm5113-405952.pdf. Accessed 23 Dec 2019.

  80. M. Rose, Y. Wen, R. Fernandes, R. Van Otten, H.J. Bergveld, and O. Trescases, in ISPSD (2015). https://doi.org/10.1109/ispsd.2015.7123464.

  81. X. Ke, J. Sankman, Y. Chen, L. He, and D.B. Ma, in ISSCC (2017). https://doi.org/10.1109/isscc.2017.7870445.

  82. X. Ke, J. Sankman, Y. Chen, L. He, and D. Brian Ma, IEEE J Solid-State Circuits (2018). https://doi.org/10.1109/jssc.2017.2749041.

  83. D. Liu, H.C.P. Dymond, J. Wang, B.H. Stark, and S.J. Hollis, in ISPSD (2019). https://doi.org/10.1109/ispsd.2019.8757646.

  84. H.C.P. Dymond, J. Wang, D. Liu, J.J.O. Dalton, N. McNeill, D. Pamunuwa, S.J. Hollis, and B.H. Stark, IEEE Trans. Power Electron. (2018). https://doi.org/10.1109/TPEL.2017.2669879.

    Article  Google Scholar 

  85. S. Ujita, Y. Kinoshita, H. Umeda, T. Morita, S. Tamura, M. Ishida, and T. Ueda, in ISPSD (2014). https://doi.org/10.1109/ispsd.2014.6855973.

  86. Y. Zhang, M. Rodríguez, and D. Maksimović, IEEE Trans. Power Electron. (2016). https://doi.org/10.1109/TPEL.2015.2513058.

    Article  Google Scholar 

  87. M.D. Ratio, in ISSCC (2018) pp. 386–388.

  88. S. Moench, I. Kallfass, R. Reiner, B. Weiss, P. Waltereit, R. Quay, and O. Ambacher, in WiPDA (2016). https://doi.org/10.1109/wipda.2016.7799938.

  89. G. Tang, M.H. Kwan, Z. Zhang, J. He, J. Lei, R.Y. Su, F.W. Yao, Y.M. Lin, J.L. Yu, T. Yang, C.H. Chern, T. Tsai, H.C. Tuan, A. Kalnitsky, and K.J. Chen, in ISPSD (2018). https://doi.org/10.1109/ispsd.2018.8393606.

  90. R. Sun, Y.C. Liang, Y.C. Yeo, C. Zhao, W. Chen, and B. Zhang, in ISPSD (2019). https://doi.org/10.1109/ispsd.2019.8757674.

  91. Navitas Semiconductor Inc, NV6113 650 V GaNFast™ Power IC (Navitas Semiconductor Inc., 2018) http://navdocs.cgwebhost.co.uk/wp-content/uploads/2019/03/NV6113-Datasheet-FINAL-8-28-18.pdf. Accessed 23 Dec 2019.

  92. Texas Instruments, LMG341xR050 600-V 50-mΩ Integrated GaN Fet Power Stage With Overcurrent Protection (Texas Instrument, 2019). http://www.ti.com/lit/ds/snosd81b/snosd81b.pdf. Accessed 23 Dec 2019.

  93. Efficient Power Conversion, EPC2115 – Dual 150 V, 5 A Integrated Gate Drivers eGaN® IC, (EPC, 2018). https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2115_preliminary.pdf. Accessed 24 Dec 2019.

  94. Y. Liu, Power Electronic Packaging (Berlin: Springer, 2012).

    Google Scholar 

  95. D. Reusch, D. Gilham, Y. Su, and F.C. Lee, in APEC (2012). https://doi.org/10.1109/apec.2012.6165796.

  96. Taxas Instruments, Find TI packages: Small Outline (SO) (Texas Instruments, 2019). http://www.ti.com/packaging/docs/searchtipackages.tsp?packageName=SO. Accessed 27 Dec 2019.

  97. Nexperia, LFPAK56; Power-SO8 (SOT669) (Neperia, 2019), https://www.nexperia.com/packages/SOT669.htm. Accessed 27 Dec 2019.

  98. Infineon, DirectFET™ (Infineon, 2019). https://www.infineon.com/cms/en/product/power/mosfet/12v-300v-n-channel-power-mosfet/optimos-and-strongirfet-latest-packages/directfet/. Accessed 27 Dec 2019.

  99. Taxas Instruments, Find TI packages:Land Grid Array (LGA) (Texas Instruments, 2019). http://www.ti.com/packaging/docs/searchtipackages.tsp?packageName=LGA. Accessed 27 Dec 2019.

  100. Kyocera, TO Ceramic Packages.(Kyocera, 2019) https://global.kyocera.com/prdct/semicon/semi/power/toceramic.html. Accessed 27 Dec 2019.

  101. S. Pavlidis, A.C. Ulusoy, W.T. Khan, O.L. Chlieh, E. Gebara, and J. Papapolymerou, in ECTC (2014). https://doi.org/10.1109/ectc.2014.6897625.

  102. W. Kexin, D. Mingxing, X. Linlin, and L. Jian, IEEE Trans. Device Mater. Reliab. (2014). https://doi.org/10.1109/TDMR.2012.2200485.

    Article  Google Scholar 

  103. Y. Huang, Y. Jia, Y. Luo, F. Xiao, and B. Liu, IEEE J. Emerg. Sel. Topics Power Electron. (2019). https://doi.org/10.1109/jestpe.2019.2924241.

    Article  Google Scholar 

  104. W. Sanfins, D. Risaletto, F. Richardeau, G. Blondel, M. Chemin, and P. Baudesson, Microelectron. Reliab. (2015). https://doi.org/10.1016/j.microrel.2015.06.006.

    Article  Google Scholar 

  105. N. Kim, R. Li, M. Machler, J. Burgers, S. Winkler, and W. T. Ng, in CIPS (2018), pp. 553–558.

  106. Teledyne e2v, Teledyne e2v completes first multi-chip-module assembly on organic flip-chip (Teledyne e2v, 2018). https://www.teledyne-e2v.com/news/teledyne-e2v-completes-first-multi-chip-module-assembly-on-organic-flip-chip/. Accessed 27 Dec 2019.

  107. U.S. EIA, Annual Energy Outlook 2019 with projections to 2050 (U.S. EIA, 2019). https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf. Accessed 23 Dec 2019.

  108. P.T. Krein, CPSS Trans. Power Electron. Appl. (2017). https://doi.org/10.24295/cpsstpea.2017.00005.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namjee Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, N., Yu, J., Zhang, W. et al. Current Trends in the Development of Normally-OFF GaN-on-Si Power Transistors and Power Modules: A Review. J. Electron. Mater. 49, 6829–6843 (2020). https://doi.org/10.1007/s11664-020-08284-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08284-7

Keywords

Navigation