Skip to main content
Log in

Existence for Semilinear Impulsive Differential Inclusions Without Compactness

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we establish sufficient conditions on the existence of mild solutions for semilinear impulsive differential inclusions by using Glicksberg-Ky Fan fixed point theorem with weak topology technique. We do not require the compactness of the evolution operator generated by the linear part and of the multivalued nonlinear term. An example is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afrouzi G A, Bohner M, Caristi G, Heidarkhani S, Moradi S. An existence result for impulsive multi-point boundary value systems using a local minimization principle. J Optim Theory Appl 2018;177(1):1–20.

    Article  MathSciNet  Google Scholar 

  2. Ahmad B, Nieto J J. A study of impulsive fractional differential inclusions with anti-periodic boundary conditions. Fract Diff Calc 2012;2(1):1–15.

    MathSciNet  MATH  Google Scholar 

  3. Brezis H. Analyse fonctionelle, Théorie et applications. Paris: Masson Editeur; 1983.

    MATH  Google Scholar 

  4. Benedetti I, Obukhovskii V, Taddei V. On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space. J Funct Spaces 2015;2015(651359):10.

    MathSciNet  MATH  Google Scholar 

  5. Benedetti I, Malaguti L, Taddei V. Nonlocal semilinear evolution equations without strong compactness: theory and applications. Bound Value Probl 2013;2013:60.

    Article  MathSciNet  Google Scholar 

  6. Bochner S, Taylor A E. Linear functionals on certain spaces of abstractly-valued functions. Ann Math 1938;39:913–944.

    Article  MathSciNet  Google Scholar 

  7. Caristi G, Ferrara M, Heidarkhani S, Tian Y. Nontrivial solutions for impulsive Sturm-Liouville differential equations with nonlinear derivative dependence. Differential Integral Equations 2017;30(11-12):989–1010.

    MathSciNet  MATH  Google Scholar 

  8. Dunford N, Schwarta J T. Linear operators. New York: Wiley; 1988.

    Google Scholar 

  9. Fan K. Fixed-point and minimax theorems in locally convex topological linear spaces. Proc Natl Acad Sci USA 1952;38:121–126.

    Article  MathSciNet  Google Scholar 

  10. Gabor G. Differential inclusions with state-dependent impulses on the half-line: new Fréchet space of functions and structure of solution sets. J Math Anal Appl 2017;446(2): 1427–1448.

    Article  MathSciNet  Google Scholar 

  11. Glicksberg I L. A further generalization of the Kakutani Fixed Point Theorem, with application to nash equilibrium points. Proc Amer Math Soc 1952;3:170–174.

    MathSciNet  MATH  Google Scholar 

  12. Graef J R, Heidarkhani S, Kong L. Nontrivial solutions of a Dirichlet boundary value problem with impulsive effects. Dynam Systems Appl 2016;25:335–350.

    MathSciNet  MATH  Google Scholar 

  13. Graef J R, Heidarkhani S, Kong L. Existence of solutions to an impulsive Dirichlet boundary value problem. Fixed Point Theory 2018;19(1):225–234.

    Article  MathSciNet  Google Scholar 

  14. Heidarkhani S, Afrouzi G A, Hadjian A, Henderson J. Existence of infinitely many anti-periodic solutions for second-order impulsive differential inclusions. Electron J Diff Equ 2013;2013(97):1–13.

    MathSciNet  MATH  Google Scholar 

  15. Heidarkhani S, Ferrara M, Salari A. Infinitely many periodic solutions for a class of perturbed second-order differential equations with impulses. Acta Appl Math 2015;139: 81–94.

    Article  MathSciNet  Google Scholar 

  16. Hadjian A, Heidarkhani S. Existence of one non-trivial anti-periodic solution for second-order impulsive differential inclusions. Math Meth Appl Sci 2017;40(14):5009–5017.

    Article  MathSciNet  Google Scholar 

  17. Heidarkhani S, Moradi S, Caristi G. Variational approaches for a p-Laplacian boundary value problem with impulsive effects. Bull Iranian Math Soc 2018;44(2):377–404.

    Article  MathSciNet  Google Scholar 

  18. Kantorovich L V, Akilov G P. Functional analysis. Oxford: Pergamon Press; 1982.

    MATH  Google Scholar 

  19. Kamenskii M, Obukhovskii V, Zecca P. Condensing multivalued maps and semilinear differential inclusions in Banach spaces. De Gruyter Series in Nonlinear Analysis and Applications. Berlin: Walter de Gruyter Co.; 2001.

  20. Luo Y. Upper and lower solutions method for impulsive differential inclusions with nonlinear boundary conditions. Dynam Syst Appl 2018;27(2):387–396.

    Google Scholar 

  21. Luo Y, Wang W B. Existence results for impulsive differential inclusions with nonlocal conditions. J Fixed Point Theory Appl 2018;20(2):91.

    Article  MathSciNet  Google Scholar 

  22. Pazy A. Semigroups of linear operators and applications to partial differential equations. Berlin: Springer-Verlag; 1983.

    Book  Google Scholar 

  23. Tian Y, Hendenson J. Three anti-periodic solutions for second-order impulsive differential inclusions via nonsmooth critical point theory. Nonlinear Anal 2012;75(18): 6496–6505.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to the referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Luo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y. Existence for Semilinear Impulsive Differential Inclusions Without Compactness. J Dyn Control Syst 26, 663–672 (2020). https://doi.org/10.1007/s10883-019-09473-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-019-09473-2

Keywords

Mathematics Subject Classification (2010)

Navigation