Skip to main content
Log in

Evaluation of dynamic characteristics of silt in Yellow River Flood Field after freeze-thaw cycles

冻融循环下黄泛区粉土动力特性评价

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked to the dynamic characteristics of silt in this region. To analyze these couple effects on the dynamic characteristics of silt, a series of tests (i.e., freeze-thaw cycling tests, vibration triaxial tests and ultrasonic wave velocity tests) were conducted and two kinds of silt (i.e., salt-free and 3%-salt silt) were designed. The results indicate that the dynamic shear strength and dynamic modulus decrease with increasing freeze-thaw cycles, while the damping ratio simultaneously increases. Furthermore, compared to salt-free silt, the decrement of dynamic shear strength and dynamic modulus of silt with 3% salt is more significant, but the damping ratio of 3%-salt silt is larger. In ultrasonic wave velocity tests, ultrasonic wave velocity of frozen soil specimens decreases as the number of freeze-thaw cycles increases. Based on the results of ultrasonic wave velocity tests, a preliminary model is proposed to evaluate damage of silt through field measurement ultrasonic data. The study could provide a theoretical basis for the treatment of silty soil highway.

摘要

由温度、盐分和车辆交通荷载的耦合作用造成的路基土动力强度的丧失,使翻浆成为山东黄泛 区公路的主要病害, 其成因与该地区粉土的动力特性密切相关。为了分析这些耦合效应对粉土动力特 性的影响,本研究进行了冻融循环试验、动三轴试验和超声波试验,设计了两种粉土(无盐粉土和3% 盐粉土)。冻融循环试验和动三轴试验的结果表明,随着冻融循环次数的增加,动剪切强度和动模量 降低,但阻尼比增大。另外,与无盐粉土相比,含盐量为3%的粉土的动剪切强度和动模量下降幅度 更大,但阻尼比反而增大。在超声波试验中,冻土试件的超声波速度随冻融循环次数的增加而减小。 根据超声波试验结果,提出了一种通过现场实测超声波数据来评价粉土损伤的初步模型,这为粉土公 路的治理提供了理论依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZARLING J C. Changes in the mechanical behavior of non-plastic silt due to drained aging [D]. Houghton: Michigan Technological University, 2002.

    Google Scholar 

  2. XU S L, SUN R, CAI Y Q. Study of sedimentation of non-cohesive particles via CFD-DEM simulations [J]. Granular Matter, 2018: 4–20. DOI: https://doi.org/10.1007/s10035-017-0769-7.

  3. FINN J R, LI M, APTE S V. Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer. [J]. Fluid Mech, 2016, 796: 340–385. DOI: https://doi.org/10.1017/jfm.2016.246.

    Article  MathSciNet  Google Scholar 

  4. LIU H L, ZENG Z N, ZHOU Y D. Test study on post-liquefaction deformation behavior of silt ground [J]. Rock and Soil Mechanics, 2007, 28(9): 1866–1870. DOI: https://doi.org/10.16285/j.rsm.2007.09.026.

    Google Scholar 

  5. LIU H L, FENG T G, GAO Y F, FEI K. Multiple mechanism boundary surface plasticity model of saturated sand and its test validation [J]. Rock and Soil Mechanics, 2003, 24(5): 696–700. DOI: https://doi.org/10.16285/j.rsm.2003.05.006.

    Google Scholar 

  6. YE Y C. Dynamic strength characteristics of silt in the Hangzhou bay [J]. Marine Sciences, 2003, 27(2): 56–59. DOI: https://doi.org/10.3969/j.issn.1000-3096.2003.02.017.

    Google Scholar 

  7. WANG S L, LV Q F, BAAJ H, LI X Y, ZHAO Y X. Volume change behavior and microstructure of stabilized loess under cyclic freeze-thaw conditions [J]. Can J Civ Eng, 2016, 43: 865–874. DOI: https://doi.org/10.1139/cjce-2016-0052.

    Article  Google Scholar 

  8. QI J L, MA W, SONG C X. Influence of freeze-thaw on engineering properties of a silty soil [J]. Cold Regions Science and Technology, 2008, 53(3): 397–404. DOI: https://doi.org/10.1016/j.coldregions.2007.05.010.

    Article  Google Scholar 

  9. MA D, MA Q, YUAN P. SHPB tests and dynamic constitutive model of artificial frozen sandy clay under confining pressure and temperature state [J]. Cold Reg Sci Technol, 2017, 136: 37–43. DOI: https://doi.org/10.1016/j.coldregions.2017.01.004.

    Article  Google Scholar 

  10. FIENCH H M. The periglacial environment [M]. 3rd ed. New York: Wiley and Sons, 2007.

    Book  Google Scholar 

  11. YANG N G, ZHOU K P, LEI T, LI J L, BIN F. Sandstones dynamic mechanical properties and failure characteristics under cycles of freezing and thawing [J]. Chinese Journal of Nonferrous Metals, 2016, 26(10): 2128–2187. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2016.10.018. (in Chinese)

    Google Scholar 

  12. ZHANG Y, ZOU B, TIAN Y, FAN J. Effect on static and dynamic characteristics of concrete due to cycles of freezing and thawing [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2017, 18(1): 1–8. DOI: https://doi.org/10.12018/j.issn.1009-3443.20160617001.

    Google Scholar 

  13. ZHANG Z, PENDIN V V, FENG W J, ZHANG Z Q. The influence of cycles of freezing and thawing on the granulometric composition of Moscow morainic clay [J]. Cold Regions Science and Technology, 2015, 3: 199–205. DOI: https://doi.org/10.3724/SP.J.1226.2015.00199.

    Google Scholar 

  14. ZHU Z, LIU Z, XIE Q, LU Y S, LI D Y. Dynamic mechanical experiments and microstructure constitutive model of frozen soil with different particle sizes [J]. Int J Damage Mech, 2017, 27(5): 686–706. DOI: https://doi.org/10.1177/1056789517700967.

    Article  Google Scholar 

  15. YAO X, QI J, LIU M, FAN Y. A frozen soil creep model with strength attenuation [J]. Acta Geotech, 2017, 2: 1–9. DOI: https://doi.org/10.1007/s11440-017-0554-0.

    Google Scholar 

  16. VIKLANDER P. Permeability and volume changes in till due to cyclic freeze-thaw [J]. Canadian Geotechnical Journal, 1998, 35(3): 471–477. DOI: https://doi.org/10.1139/cgj-35-3-471.

    Article  Google Scholar 

  17. ZHANG Y. Impact of freeze-thaw on liquefaction potential and dynamic prosperities of Mabel Creek Silt [D]. Fairbanks: University of Alaska Fairbanks, 2009.

    Google Scholar 

  18. BETTENAY E, BLACKMORE A V, HINGSTON F J. Aspects of the hydrologic cycle and related salinity in the Belka valley, Western Australia [J]. Aust J Soil Res, 1964, 2: 187–210. DOI: https://doi.org/10.1071/sr9640187.

    Article  Google Scholar 

  19. NIXON J F, LEM G. Creep and strength testing of frozen saline fine-grained soils [J]. Can Geotech J, 1984, 21(3): 518–529. DOI: https://doi.org/10.1139/t84-054.

    Article  Google Scholar 

  20. WIJEWEERA H, JOSHI R C. Creep behavior of saline fine-grained frozen soil [J]. Journal of Cold Regions Engineering, 1993, 7(3): 77–89. DOI: https://doi.org/10.1061/(ASCE)0887-381X(1993)7:3(77).

    Article  Google Scholar 

  21. GHASSEMI F, JAKEMAN A J, NIX H A. Salinisation of land and water resources: Human causes, extent, management and case studies [M]. Canberra, Australia: NSW University Press, 1995.

    Google Scholar 

  22. MAO P, MU H X, CAO B H, QIN Y J, SHAO H B, WANG S M, TAI X G. Dynamic characteristics of soil properties in a Robinia pseudoacacia vegetation and coastal eco-restoration [J]. Ecological Engineering, 2016, 92(7): 132–137. DOI: https://doi.org/10.1016/j.ecoleng.2016.03.037.

    Article  Google Scholar 

  23. DOBROVOL’SKII G V, STASYUK N V. Fundamental work on saline soils of Russia [J]. Eurasian Soil Science, 2008, 41(1): 342–353. DOI: https://doi.org/10.1007/s11475-008-1012-7.

    Article  Google Scholar 

  24. BUSACCA A J, ANIKU J R, SINGER M J. Dispersion of soils by an ultrasonic method that eliminates probe contact [J]. Soil Science Society of America Journal, 1984, 48(5): 1125–1129. DOI: https://doi.org/10.2136/sssaj1984.03615995004800050034x.

    Article  Google Scholar 

  25. MORRA M J, BLANK R R, FREEBORN L L, SHAFII B. Size fractionation of soil organo-mineral complexs using ultrasonic dispersion [J]. Soil Science Society of America Journal, 1991, 152(4): 294–303. DOI: https://doi.org/10.1097/00010694-199110000-00008.

    Article  Google Scholar 

  26. CUI X Z, ZHANG J, ZHANG N, ZHOU Y X, GAO Z J, SUI W. Laboratory simulation tests of effect of mechanical damage on moisture damage evolution in hot-mix asphalt pavement [J]. International Journal of Pavement Engineering, 2014, 16(8): 699–709. DOI: https://doi.org/10.1080/10298436.2014.943221.

    Article  Google Scholar 

  27. YI Y J, FENG D C, WANG G W, YU Z S. Application of ultrasonic test method in freeze-thaw test of asphalt mixture [J]. Journal of Highway and Transportation Research and Development, 2009, 26(11): 6–10. DOI: https://doi.org/10.3969/j.issn.1002-0268.2009.11.002.

    Google Scholar 

  28. BIRGISSON B, ROQUE R, PAGE G C. Ultrasonic pulse wave velocity test for monitoring changes in hot-mix asphalt mixture integrity from exposure to moisture [J]. Transportation Research Record, 2003, 1832: 173–181. DOI: https://doi.org/10.3141/1832-21.

    Article  Google Scholar 

  29. WANG L L. Foundation of stress waves [M]. Beijing: National Defence Industry Press, 1985. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-zhuang Cui  (崔新壮).

Additional information

Foundation item: Project(2018YFB1600100) supported by the National Key Research and Development Project of China; Projects(51778346, 51508310) supported by the National Natural Science Foundation of China; Project(2019GSF111007) supported by Key Research and Development Project of Shandong Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Q., Zheng, Yj., Cui, Xz. et al. Evaluation of dynamic characteristics of silt in Yellow River Flood Field after freeze-thaw cycles. J. Cent. South Univ. 27, 2113–2122 (2020). https://doi.org/10.1007/s11771-020-4434-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4434-7

Key words

关键词

Navigation