Skip to main content
Log in

Improved method for determining active earth pressure considering arching effect and actual slip surface

考虑土拱效应和滑裂面影响的主动土压力计算方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle ϕ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82H–1.0H, it is a plane at an angle of π/4+ϕ/2 to the horizontal plane. In the height range of 0–0.82H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+ϕ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods.

摘要

为研究挡土墙主动土压力分布规律,本文开展了刚性挡土墙平动模型试验,利用颗粒图像测速 技术研究高度为H、内摩擦角为ϕ 的无黏性土体在主动破坏过程中的位移和剪应变发展规律。试验结 果表明,挡土墙发生平移时的土体变形可划分三个阶段:初始阶段,发展阶段和稳定阶段。稳定阶段 的土体滑裂面由两部分组成,在0.82H~1.0H 高度范围内,滑裂面为与水平面成π/4+ϕ/2 的平面,在 0~0.82H 高度范围内的滑裂面为曲面,该曲面处在对数螺旋面和与水平面成π/4+ϕ/2 的平面所夹区域 之中。本文考虑土拱效应,基于差分法提出了适用于任意滑裂面形状的主动土压力计算方法,并根据 实际滑裂面计算了土体主动土压力理论值。在此基础上,将本文方法得到的理论值与实验数据及其他 方法计算的理论值进行对比,验证了本文所提出方法的有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Y Z. Distribution of earth pressure on a retaining wall [J]. Geotechnique, 2000, 50(1): 83–88. DOI: https://doi.org/10.1680/geot.2000.50.1.83.

    Article  Google Scholar 

  2. YANG Gui, WANG Yang-yang, LIU Yan-chen. Analysis of active earth pressure on retaining walls based on curved sliding surface [J]. Rock and Soil Mechanics, 2017, 38(8): 2182–2188. DOI: https://doi.org/10.16285/j.rsm.2017.08.004. (in Chinese)

    Google Scholar 

  3. CAO Zhen-ming. Active earth pressure analysis on retaining wall with sliding surface of filling curve [J]. China Journal of Highway and Transport, 1995, 8(1): 7–14. DOI: https://doi.org/10.19721/j.cnki.10017372.1995.s1.002. (in Chinese)

    MathSciNet  Google Scholar 

  4. WANG Kui-hua, MA Shao-jun, WU Wen-bing. Active earth pressure of cohesive soil backfill on retailing wall with curved sliding surface [J]. Journal of Southwest Jiaotong University, 2011, 46(5): 732–738. DOI: https://doi.org/10.3969/j.issn.0258-2724.2011.05.004. (in Chinese)

    Google Scholar 

  5. YANG Ming-hui, DAI Xia-bin, ZHAO Ming-hua, LUO Hong. Calculation of active earth pressure for limited soils with curved sliding surface [J]. Rock and Soil Mechanics, 2017, 38(7): 2029–2035. DOI: https://doi.org/10.16285/j.rsm.2017.07.024. (in Chinese)

    Google Scholar 

  6. TSAGARELI Z V. Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface [J]. Soil Mechanics and Foundation Engineering, 1965, 2(4): 197–200. DOI: https://doi.org/10.1007/BF01706095.

    Article  Google Scholar 

  7. HARROP-WILLIAMS K. Arch in soil arching [J]. Journal of Geotechnical Engineering, 1989, 115(3): 415–419. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(302).

    Article  Google Scholar 

  8. FANG Y S, ISHIBASHI I. Static earth pressures with various wall movements [J]. Journal of Geotechnical Engineering, 1986, 112(3): 317–333. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(317).

    Article  Google Scholar 

  9. GOEL S, PATRA N R. Effect of arching on active earth pressure for rigid retaining walls considering translation mode [J]. International Journal of Geomechanics, 2008, 8(2): 123–133. DOI: https://doi.org/10.1061/(ASCE)1532-3641(2008)8:2(123).

    Article  Google Scholar 

  10. PAIK K H, SALGADO R. Estimation of active earth pressure against rigid retaining walls considering arching effects [J]. Geotechnique, 2003, 53(7): 643–654. DOI: https://doi.org/10.1680/geot.2003.53.7.643.

    Article  Google Scholar 

  11. KHOSRAVI M H, PIPATPONGSA T, TAKEMURA J. Theoretical analysis of earth pressure against rigid retaining walls under translation mode [J]. Soils and Foundations, 2016, 56(4): 664–675. DOI: https://doi.org/10.1016/j.sandf.2016.07.007.

    Article  Google Scholar 

  12. KHOSRAVI M H, KARGAR A R, AMINI M. Active earth pressures for non-planar to planar slip surfaces considering soil arching [J]. International Journal of Geotechnical Engineering, 2018: 1–10. DOI: https://doi.org/10.1080/19386362.2018.1503439.

  13. ZHOU Y T, CHEN Q, CHEN F. Active earth pressure on translating rigid retaining structures considering soil arching effect [J]. European Journal of Environmental and Civil Engineering, 2018, 22(8): 910–926. DOI: https://doi.org/10.1080/19648189.2016.1229225.

    Article  Google Scholar 

  14. ZHOU Q Y, ZHOU Y T, WANG X M. Estimation of active earth pressure on a translating rigid retaining wall considering soil arching effect [J]. Indian Geotechnical Journal, 2018, 48(3): 541–548. DOI: https://doi.org/10.1007/s40098-017-0252-8.

    Article  Google Scholar 

  15. RAO P, CHEN Q, ZHOU Y, NIMBALKAR S, CHIARO G. Determination of active earth pressure on rigid retaining wall considering arching effect in cohesive backfill soil [J]. International Journal of Geomechanics, 2015, 16(3): 1–9. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000589.

    Google Scholar 

  16. WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry [J]. Geotechnique, 2003, 53(7): 619–631. DOI: https://doi.org/10.1680/geot.53.7.619.37383.

    Article  Google Scholar 

  17. WHITE D, RANDOLPH M, THOMPSON B. An image-based deformation measurement system for the geotechnical centrifuge [J]. International Journal of Physical Modelling in Geotechnics, 2005, 5(3): 1–12. DOI: https://doi.org/10.1680/ijpmg.2005.050301.

    Article  Google Scholar 

  18. MAHMOUDIMEHRIZI M, DAGHIGH Y, NAZARIAFSHAR J. Physical modeling of the helical anchor walls’ behavior using particle image velocity [J]. Indian Geotechnical Journal, 2019: 1–17. DOI: https://doi.org/10.1007/s40098-019-00397-z.

  19. SALEHI ALAMDARI N, KHOSRAVI M, KATEBI H. Distribution of lateral active earth pressure on a rigid retaining wall under various motion modes [J]. International Journal of Mining and Geo-Engineering, 2020, 54(1): 15–25. DOI: https://doi.org/10.22059/ijmge.2019.280916.594805.

    Google Scholar 

  20. NIEDOSTATKIEWICZ M, LESNIEWSKA D, TEJCHMAN J. Experimental analysis of shear zone patterns in cohesionless for earth pressure problems using particle image velocimetry [J]. Strain, 2011, 47: 218–231. DOI: https://doi.org/10.1111/j.1475-1305.2010.00761.x

    Article  Google Scholar 

  21. KHOSRAVI M H, PIPATPONGSA T, TAKEMURA J. Experimental analysis of earth pressure against rigid retaining walls under translation mode [J]. Géotechnique, 2013, 63(12): 1020–1028. DOI: https://doi.org/10.1680/geot.12.P.021.

    Article  Google Scholar 

  22. PATEL S, DEB K. Study of active earth pressure behind a vertical retaining wall subjected to rotation about the base [J]. International Journal of Geomechanics, 2020, 20(4): 402–408. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001639.

    Article  Google Scholar 

  23. NAZHAT Y, AIREY D. The kinematics of granular soils subjected to rapid impact loading [J]. Granular Matter, 2015, 17(1): 1–20. DOI: https://doi.org/10.1007/s10035-014-0544-y.

    Article  Google Scholar 

  24. AUBRAM D. Development and experimental validation of an arbitrary Lagrangian-Eulerian (ALE) method for soil mechanics [J]. Geotechnik, 2015, 38(3): 193–204. DOI: https://doi.org/10.1002/gete.201400030.

    Article  Google Scholar 

  25. ZENG L, XIAO L Y, ZHANG J H, FU H Y. The Role of Nanotechnology in Subgrade and Pavement Engineering: A Review [J]. Journal of Nanoscience and Nanotechnology, 2020, 20: 4607–4618. DOI: https://doi.org/10.1166/jnn.2020.18491.

    Article  Google Scholar 

  26. ZHANG J H, LI F, ZENG L, PENG J H, LI J. Numerical simulation of the moisture migration of unsaturated clay embankments in southern China considering stress state [J]. Bulletin of Engineering Geology and the Environment, 2020: 1–10. DOI: https://doi.org/10.1007/s10064-020-01916-6.

  27. ZENG L, YAO X F, ZHANG J H, GAO Q F, CHEN J C, GUI Y T. Ponded infiltration and spatial-temporal prediction of the water content of silty mudstone [J]. Bulletin of Engineering Geology and the Environment, 2020: 1–12. DOI: https://doi.org/10.1007/s10064-020-01880-1.

  28. YING Hong-wei, ZHANG Jin-hong, WANG Xiao-gang, LI Bing-he, ZHU Wei. Experimental analysis of passive earth pressure against rigid retaining wall under translation mode for finite soils [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 978–986. DOI: https://doi.org/10.11779/CJGE201606002. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-fu Liu  (刘正夫).

Additional information

Foundation item: Projects(51978084, 51678073) supported by the National Natural Science Foundation of China; Project(2020JJ4605) supported by the Natural Science Foundation of Hunan Province, China; Project(2019IC13) supported by the International Cooperation and Development Project of Double First-Class Scientific Research in Changsha University of Science & Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Zm., Liu, Zf., Liu, Xh. et al. Improved method for determining active earth pressure considering arching effect and actual slip surface. J. Cent. South Univ. 27, 2032–2042 (2020). https://doi.org/10.1007/s11771-020-4428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4428-5

Key words

关键词

Navigation