Skip to main content
Log in

Settlement characteristics of bridge approach embankment based on scale model test

基于缩尺模型试验的路桥过渡段沉降特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to analyze the effects of backfill materials, geometries and slab setting on the settlement of bridge approach embankment, scale model was built based on the structural characteristics of bridge approach embankment, and scale model tests were carried out under different conditions. The results show that when graded gravels were selected as the backfill materials, the effect of setting approach slab to reduce the differential settlement is more prominent. When lime soils were selected as the backfill material, approach slab can moderate the longitudinal settlement slope. When using different backfill materials, the ultimate settlement of the positive trapezoidal backfill geometries is less than that of the inverted trapezoid, and the backfill geometries have little effect on the settlement slope.

摘要

为了研究不同回填材料、回填结构及桥头搭板的设置对路桥过渡段沉降的影响,本文根据路桥 过渡段的结构特性,进行了不同条件下的路桥过渡段缩尺模型试验。结果表明,使用级配碎石作为回 填材料进行路桥过渡段路基回填时,设置搭板对减小路桥过渡段差异沉降的效果更为明显;使用石灰 土时,设置搭板可以缓和桥台后路线纵向不同位置的沉降坡度。使用不同回填材料时,正梯形回填结 构最终沉降量均小于倒梯形,且回填结构对沉降坡度的影响不大。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LACO K, BORZOVIÄ V. Reliability of approach slabs and modelling of transition zones of bridges [J]. Applied Mechanics & Materials, 2016, 821: 741–746. DOI: https://doi.org/10.4028/www.scientific.net/AMM.821.741.

    Article  Google Scholar 

  2. NIU Fu-jun, LIN Zhan-ju, LU Jia-hao, LIU Hua, XU Zhi-ying. Characteristics of roadbed settlement in embankment-bridge transition section along the Qinghai-Tibet Railway in permafrost regions [J]. Cold Regions Science and Technology, 2011, 65(3): 437–445. DOI: https://doi.org/10.1016/j.coldregions.2010.10.014.

    Article  Google Scholar 

  3. ZHOU Juan-lan, ZHENG Mu-lian, WANG Chong-tao, JING Wei, MENG Jian-dang, CHEN Jing-xing. Dynamic response analysis of road-bridge transition section without slab [J]. International Journal of Pavement Research and Technology, 2017, 10(6): 526–535. DOI: https://doi.org/10.1016/j.ijprt.2017.04.004.

    Article  Google Scholar 

  4. IKEMOTO H, TAKASAKI H. Experimental study on method for controlling settlement of backfill of abutment [J]. Japanese Geotechnical Society Special Publication, 2016, 2(61): 2096–2100. DOI: https://doi.org/10.3208/jgssp.JPN-092.

    Article  Google Scholar 

  5. MUHO E V, BESKOU N D. Dynamic response of an infinite beam resting on a Winkler foundation to a load moving on its surface with variable speed [J]. Soil Dynamics and Earthquake Engineering, 2018, 109: 150–153. DOI: https://doi.org/10.1016/j.soildyn.2018.02.034.

    Article  Google Scholar 

  6. YU Yong-hua, XIE Yong-li, YANG Xiao-hua, LI Xin-wei. Three-dimensional numerical analysis of geocell flexible approach slab for treating differential settlement at bridgesubgrade transition section [J]. China Journal of Highway & Transport, 2006, 20(4): 12–18. (in Chinese)

    Google Scholar 

  7. ZHANG Jun-hui, PENG Jun-hui, ZENG Ling, LI Jue, LI Feng. Rapid estimation of resilient modulus of subgrade soils using performance-related soil properties [J]. International Journal of Pavement Engineering, 2019, 1: 1–8. DOI: https://doi.org/10.1080/10298436.2019.1643022.

    Google Scholar 

  8. JAYAWICKRAMA P, NASH P, LEAVERTON M, MISHRA D. Water intrusion in base/subgrade materials at bridge ends [R]. Center for Multidisciplinary Research in Transportation, 2004. DOI: hdl.handle.net/2346/22808.

  9. MOUSAVI S E, KARAMVAND A. Assessment of strength development in stabilized soil with GBR PLUS and silica sand [J]. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4(4): 412–421. DOI: CNKI:SUN:JTTE.0.2017-04-011.

    Article  Google Scholar 

  10. WHITE D J, MEKKAWY M M, SRITHARAN S, SULEIMAN M T. “Underlying” causes for settlement of bridge approach pavement systems [J]. Journal of Performance of Constructed Facilities, 2007, 21(4): 273–282. DOI: https://doi.org/10.1061/(asce)0887-3828(2007)21:4(273).

    Article  Google Scholar 

  11. ZHANG Jun-hui, PENG Jun-hui, ZHENG Jian-long, DAI Liang-liang, YAO Yong-sheng. Prediction of resilient modulus of compacted cohesive soils in south China [J]. International Journal of Geomechanics, 2019, 19(7): 04019068.

    Article  Google Scholar 

  12. BAI Tao, HU Xiao-di, GU Fan. Practice of searching a noncircular critical slip surface in a slope with soil variability [J]. International Journal of Geomechanics, 2019, 19(3): 04018199. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001350.

    Article  Google Scholar 

  13. REZAEI M, BINDIGANAVILE V. Application of cement-based foams for narrow-trench backfilling [J]. Road Materials and Pavement Design, 2020(11): 1–25. DOI: https://doi.org/10.1080/14680629.2020.1722206.

  14. ZHOU Nan, OUYANG Shen-yang, CHENG Qiang-qiang, JU Feng. Experimental study on mechanical behavior of a new backfilling material: Cement-treated marine clay [J]. Advances in Materials Science and Engineering, 2019, 2019: 1–8. DOI: https://doi.org/10.1155/2019/1261694.

    Google Scholar 

  15. ZHANG Kai-peng, JIANG Li-min, WANG Zhi-de. Research of the settlement of bridge approach slab’s impact on bump at bridgehead [C]// 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). Lushan: IEEE, 2011: 589–592. DOI: https://doi.org/10.1109/ICETCE.2011.5775451.

    Chapter  Google Scholar 

  16. PARKS S, YANG M, GAJAN S, PEI Qing. Strength-based differential tolerable settlement limits of bridges [J]. Advances in Structural Engineering, 2018, 21(1): 46–58. DOI: https://doi.org/10.1177/1369433217706779.

    Article  Google Scholar 

  17. WAHLS H E. Tolerable deformations [C]// Vertical & Horizontal Deformations of Foundations & Embankments. ASCE, 2015.

  18. PECNÍK M, BORZOVI V, LACO K. Non-linear FEM analysis of integral bridges transition area [J]. Solid State Phenomena, 2017, 259: 152–157. DOI: https://doi.org/10.4028/www.scientific.net/ssp.259.152.

    Article  Google Scholar 

  19. RAMALAKSHMI M, DODAGOUDAR G R. Passive force-displacement behaviour of GRS bridge abutments [J]. International Journal of Geosynthetics and Ground Engineering, 2018, 4(4): 28–38. DOI: https://doi.org/10.1007/s40891-018-0145-7.

    Article  Google Scholar 

  20. LI Xi-an, WANG Li, HONG Bo, LI Lin-cui, LIU Jia, LEI Hao-nan. Erosion characteristics of loess tunnels on the Loess Plateau: A field investigation and experimental study [J]. Earth Surface Processes and Landforms, 2020. DOI: https://doi.org/10.1002/esp.4857.

  21. RAJA P S K, THYAGARAJ T. Effect of compaction time delay on compaction and strength behavior of lime-treated expansive soil contacted with sulfate [J]. Innovative Infrastructure Solution, 2020, 5(14). DOI: https://doi.org/10.1007/s41062-020-0268-2.

  22. CAI C S, SHI X M, VOYIADJIS G Z, ZHANG Z J. Structural performance of bridge approach slabs under given embankment settlement [J]. Journal of Bridge Engineering, 2005, 10(4): 482–489. DOI: https://doi.org/10.1061/(asce)1084-0702(2005)10:4(482).

    Article  Google Scholar 

  23. CHEN Dar-hao, YI Wen. Performance of settled bridge-approach slabs with polyurethane-foam injection [J]. Journal of Testing and Evaluation, 2015, 43(6): 20140431. DOI: https://doi.org/10.1520/JTE20140431.

    Article  Google Scholar 

  24. WANG Zhi-yuan, ZHANG Hong, WANG Ya-jun. Method of determining the length of approach slab for highway bridge [J]. Advanced Materials Research, 2014, 953–954: 1657–1662. DOI: https://doi.org/10.4028/www.scientific.net/amr.953-954.1657.

    Google Scholar 

  25. SUN Wen-bin, HE Wei-zhong, JIANG Yang, CHEN Bao-hai. Distresses and countermeasures of the abutment displacsments on the soft clay ground [C]// 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). Yichang, 2012: 288–291. DOI: https://doi.org/10.1109/CECNet.2012.6201379.

  26. JIN Xiao-qin, SHAO Xu-dong, YAN Ban-fu, PENG Wang-hu. New technologies in China’s first jointless integral-abutment bridge [J]. IABSE Symposium Report, 2004, 88(6): 84–89. DOI: https://doi.org/10.2749/222137804796291331.

    Article  Google Scholar 

  27. TAFRESHI S N M, NOROUZI A. Application of waste rubber to reduce the settlement of road embankment [J]. Geomechanics & Engineering, 2015, 9(2): 219–241. DOI: https://doi.org/10.12989/gae.2015.9.2.219.

    Article  Google Scholar 

  28. ZHANG Jun-hui, GU Fan, ZHANG Yu-qing. Use of building-related construction and demolition wastes in highway embankment: Laboratory and field evaluations [J]. Journal of Cleaner Production, 2019, 230: 1051–1060. DOI: https://doi.org/10.1016/j.jclepro.2019.05.182.

    Article  Google Scholar 

  29. ZHANG Jun-hui, DING Le, LI Feng, PENG Jun-hui. Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China [J]. Journal of Cleaner Production, 2020, 255: 120223.

    Article  Google Scholar 

  30. ZHANG Jun-hui, PENG Jun-hui, LIU Wei-zheng, LU Wei-hua. Predicting resilient modulus of fine-grained subgrade soils considering relative compaction and matric suction [J]. Road Materials and Pavement Design, 2019: 1–13. DOI: https://doi.org/10.1080/14680629.2019.1651756.

  31. ZHANG Jiu-peng, TAN Hao-qi, PEI Jian-zhong, QU Tian, LIU Wo-long. Evaluating crack resistance of asphalt mixture based on essential fracture energy and fracture toughness [J]. International Journal of Geomechanics, 2019, 19(4): 06019005. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001390.

    Article  Google Scholar 

  32. GB 506666–2011. Code for construction of concrete structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)

    Google Scholar 

  33. LV Song-tao, LIU Chao-chao, YAO Hui, ZHENG Jian-long. Comparisons of synchronous measurement methods on various moduli of asphalt mixtures [J]. Construction and Building Materials, 2018, 158: 1035–1045. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.193.

    Article  Google Scholar 

  34. PENG Jun-hui, ZHANG Jun-hui, LI Jue, YAO Yong-sheng, ZHANG An-shun. Modeling humidity and stress-dependent subgrade soils in flexible pavements [J]. Computers and Geotechnics, 2020, 120: 103413. DOI: https://doi.org/10.1016/j.compgeo.2019.103413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiu-peng Zhang  (张久鹏).

Additional information

Foundation item: Project(51978068) supported by the National Natural Science Foundation of China; Project(2018YFE0103800) supported by the National Key R&D Program of China; Project(2017M620434) supported by the China Postdoctoral Science Foundation; Project(310821173501) support by the Special Fund for Basic Scientific Research of Central College of Chang’an University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jp., Liu, T., Pei, Jz. et al. Settlement characteristics of bridge approach embankment based on scale model test. J. Cent. South Univ. 27, 1956–1964 (2020). https://doi.org/10.1007/s11771-020-4422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4422-y

Key words

关键词

Navigation