Skip to main content
Log in

Automated extraction of expressway road surface from mobile laser scanning data

高速公路路面移动激光扫描数据的自动提取

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment. The proposed method has three major steps: constructing a voxel model; extracting the road surface points by employing the voxel-based segmentation algorithm; refining the road boundary using the curb-based segmentation algorithm. To evaluate the accuracy of the proposed method, the two-point cloud datasets of two typical test sites in an expressway environment consisting of flat and bumpy surfaces with a high slope were used. The proposed algorithm extracted the road surface successfully with high accuracy. There was an average recall of 99.5%, the precision was 96.3%, and the F1 score was 97.9%. From the extracted road surface, a framework for the estimation of road roughness was proposed. Good agreement was achieved when comparing the results of the road roughness map with the visual image, indicating the feasibility and effectiveness of the proposed framework.

摘要

提出了一种基于体像的区域生长方法,用于高速公路环境下移动激光扫描点云的路面自动提取。 该方法包括三个主要步骤: 构造体素模型; 采用基于体素的分割算法提取路面点; 利用基于边界的分 割算法细化道路边界。为了评价该方法的准确性,我们使用了高速公路平坦和颠簸高坡路面环境下的 两个典型试验点的两点云数据集。该算法成功地实现了路面的高精度提取。平均召回率为99.5%,精 度为96.3%,F1 得分为97.9%。根据所提取的路面,提出了一种路面平整度估计框架。当将路面粗糙 度图的结果与视觉图像进行比较时,得到了很好的一致性,说明了所提框架的可行性和有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GUAN H, LI J, YU Y, CHAPMAN M, WANG C. Automated road information extraction from mobile laser scanning data [J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 194–205. DOI: https://doi.org/10.1109/TITS.2014.2328589.

    Article  Google Scholar 

  2. DAVIES R B, CENEK P D, HENDERSON R J. The effect of skid resistance and texture on crash risk [C]// International Conference on Surface Friction-Roads and Runways. Christchurch, New Zealand, 2005.

  3. YADAV M, SINGH A K, LOHANI B. Extraction of road surface from mobile lidar data of complex road environment [J]. International Journal of Remote Sensing, 2017, 38(16): 4655–4682. DOI: https://doi.org/10.1080/01431161.2017.1320451.

    Article  Google Scholar 

  4. SOILÁN M, TRUONG H L, RIVEIRO B, LAEFER D. Automatic extraction of road features in urban environments using dense ALS data [J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 226–236. DOI: https://doi.org/10.1016/j.jag.2017.09.010.

    Article  Google Scholar 

  5. ALSHEHHI R, MARPU P R. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126: 245–260. DOI: https://doi.org/10.1016/j.isprsjprs.2017.02.008.

    Article  Google Scholar 

  6. BALADO J, DÍAZ-VILARIÑO L, ARIAS P, GONZÁLEZJORGE H. Automatic classification of urban ground elements from mobile laser scanning data [J]. Automation in Construction, 2018, 86: 226–239. DOI: https://doi.org/10.1016/j.autcon.2017.09.004.

    Article  Google Scholar 

  7. MA L, LI Y, LI J, WANG C, WANG R, CHAPMAN M A. Mobile laser scanned point-clouds for road object detection and extraction: A Review [J]. Remote Sensing, 2018, 10(10): 1531. DOI: https://doi.org/10.3390/RS10101531DOI.

    Article  Google Scholar 

  8. CHEN De-liang, HE Xiu-feng. Fast automatic three-dimensional road model reconstruction based on mobile laser scanning system [J]. Optik, 2015, 126: 725–730. DOI: https://doi.org/10.1016/j.ijleo.2015.02.021.

    Article  Google Scholar 

  9. AKAGUL M, YURTSEVEN H, AKBURAK S, DEMIR M, CIGIZOGLU H K, OZTURK T, EKSI M, AKAY A O. Short term monitoring of forest road pavement degradation using terrestrial laser scanning [J]. Measurement, 2017, 103: 283–293. DOI: https://doi.org/10.1016/j.measurement.2017.02.045.

    Article  Google Scholar 

  10. YANG MM, WAN Y C, LIU X L, XU J Z, WEI Z Y, CHEN M L, SHENG P. Laser data based automatic recognition and maintenance of road markings from MLS system [J]. Optics & Laser Technology, 2018, 107: 192–203. DOI: https://doi.org/10.1016/j.optlastec.2018.05.027.

    Article  Google Scholar 

  11. YAO L, CHEN Q, QIN C, WU H, ZHANG S. Automatic extraction of road markings from mobile laser-point cloud using intensity data [C]// International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing, China, 2018: 2113–2119.

  12. GUAN H, YAN W, YU Y, ZHONG L, LI D. Robust traffic-sign detection and classification using mobile Lidar data with digital images [J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2018, 11(5): 1715–1724. DOI: https://doi.org/10.1109/JSTARS.2018.2810143.

    Article  Google Scholar 

  13. GEHRUNG J, HEBEL M, ARENS M, STILLA U. An approach to extract moving objects from MLS data using a volumetric background representation [C]// ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Hannover, Germany, 2017. DOI: https://doi.org/10.5194/isprs-annals-IV-1-W1-107-2017.

  14. YADAV M, SINGH A K. Rural road surface extraction using mobile LiDAR point cloud data [J]. Journal of the Indian Society of Remote Sensing, 2018, 46(4): 531–538. DOI: https://doi.org/10.1007/s12524-017-0732-4.

    Article  Google Scholar 

  15. YANG B, LIU Y, DONG Z, LIANG F, LI B, PENG X. 3D local feature BKD to extract road information from mobile laser scanning point clouds [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 329–343. DOI: https://doi.org/10.1016/j.isprsjprs.2017.06.007.

    Article  Google Scholar 

  16. ZAI D W, LI J, GUO Y L, CHENG M, LIN Y B, LUO H, WANG C. 3-D road boundary extraction from mobile laser scanning data via supervoxels and graph cuts [J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 802–813. DOI: https://doi.org/10.1109/TITS.2017.2701403.

    Article  Google Scholar 

  17. XU S, WANG R, ZHENG H. Road curb extraction from mobile LiDAR point clouds [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 996–1009. DOI: https://doi.org/10.1109/TGRS.2016.2617819.

    Article  Google Scholar 

  18. KUMAR P, LEWIS P, MCCARTHY T. The potential of active contour models in extracting road edges from mobile laser scanning data [J]. Infrastructures, 2017, 2(3): 9. DOI: https://doi.org/10.3390/infrastructures2030009.

    Article  Google Scholar 

  19. NEUPANE S R, GHARAIBEH N G. A heuristic-based method for obtaining road surface type information from mobile lidar for use in network-level infrastructure management [J]. Measurement, 2019, 131: 664–670. DOI: https://doi.org/10.1016/j.measurement.2018.09.015.

    Article  Google Scholar 

  20. HOLGADO-BARCO A, RIVEIRO B, GONZÁLEZAGUILERA D, ARIAS P. Automatic inventory of road cross-sections from mobile laser scanning system [J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(1): 3–17. DOI: https://doi.org/10.1111/mice.12213.

    Article  Google Scholar 

  21. CHENG M, ZHANG H, WANG C, LI J. Extraction and classification of road markings using mobile laser scanning point clouds [J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2017, 10(3): 1182–1196. DOI: https://doi.org/10.1109/JSTARS.2016.2606507.

    Article  Google Scholar 

  22. LI F, ELBERINK S O, VOSSELMAN G. Pole-like road furniture detection and decomposition in mobile laser scanning data based on spatial relations [J]. Remote Sensing, 2018, 10(4): 531. DOI: https://doi.org/10.3390/rs10040531.

    Article  Google Scholar 

  23. LI Y, WANG W X, TANG S J, LI D L, WANG Y K, YUAN Z L, GUO R Z, LI X M, XIU W Q. Localization and extraction of road poles in urban areas from mobile laser scanning data [J]. Remote Sensing, 2019, 11(4): 401. DOI: https://doi.org/10.3390/rs11040401.

    Article  Google Scholar 

  24. CHEN S, TRUONG-HONG L, LAEFER D F, MANGINA E. Automated bridge deck evaluation through UAV derived point cloud [C]// CERI2018 Congress. The 2018 Civil Engineering Research in Ireland Conference. Dublin: CERAI, 2018: 735–740.

    Google Scholar 

  25. KARILA K, MATIKAINEN L, PUTTONEN E, HYYPPÄ J. Feasibility of multispectral airborne laser scanning data for road mapping [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 294–298. DOI: https://doi.org/10.1109/LGRS.2016.2631261.

    Article  Google Scholar 

  26. MATIKAINEN L, KARILA K, HYYPPÄ J, LITKEY P, PUTTONEN E, AHOKAS E. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128: 298–313. DOI: https://doi.org/10.1016/j.isprsjprs.2017.04.005.

    Article  Google Scholar 

  27. MCELHINNEY C, KUMAR P, CAHALANE C, MCCARTHY T. Initial results from european road safety inspection (EURSI) mobile mapping project [C]// International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Newcastle, UK, 2010.

  28. ZHANG W. Lidar based road and road-edge detection [C]// Proceedings of IEEE Intelligent Vehicles Symposium. San Diego, USA, 2010. DOI: https://doi.org/10.1109/IVS.2010.5548134.

  29. IBRAHIM S, LICHTI D. Curb-based street floor extraction from mobile terrestrial lidar point cloud [C]// International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Melbourne, Australia, 2012. DOI: https://doi.org/10.5194/isprsarchives-XXXIX-B5-193-2012.

  30. YANG B, FANG L, LI J. Semi-automated extraction and delineation of 3d roads of street scene from mobile laser scanning point clouds [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79: 80–93. DOI: https://doi.org/10.1016/j.isprsjprs.2013.01.016.

    Article  Google Scholar 

  31. WANG H Y, LUO H, WEN C L, CHENG J, LI P, CHEN Y P, WANG C, LI J. Road boundary detection based on local normal saliency from mobile laser scanning data [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(10): 2085–2089. DOI: https://doi.org/10.1109/LGRS.2015.2449074.

    Article  Google Scholar 

  32. CABO C, KUKKO A, GARCÍA-CORTÉS S, KAARTINEN H, HYYPPÄ J, ORDOÑEZ C. An algorithm for automatic road asphalt edge delineation from mobile laser scanner data using the line clouds concept [J]. Remote Sensing, 2016, 8(9): 1–20. DOI: https://doi.org/10.3390/rs8090740.

    Article  Google Scholar 

  33. MIYAZAKI R, YAMAMOTO M, HANAMOTO E, IZUMI H, HARADA K. A line-based approach for precise extraction of road and curb region from mobile mapping data [C]// ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Rivar del Garda, Italy, 2014. DOI: https://doi.org/10.5194/isprsannals-II-5-243-2014.

  34. WU B, YU B, HUANG C, WU Q, WU J. Automated extraction of ground surface along urban roads from mobile laser scanning point clouds [J]. Remote Sensing Letters, 2016, 7(2): 170–179. DOI: https://doi.org/10.1080/2150704X.2015.1117156.

    Article  Google Scholar 

  35. RUSU R B, MARTON Z C, BLODOW N, DOLHA M, BEETZ M. Towards 3D point cloud based object maps for household environments [J]. Robotics and Autonomous System, 2008, 56(11): 927–941. DOI: https://doi.org/10.1016/j.robot.2008.08.005.

    Article  Google Scholar 

  36. CloudCompare. GNU general public license, Version 2.10. [EB/OL]. http://www.cloudcompare.org/.

  37. AYALA D, BRUNET P, JUAN R, NAVAZO I. Object representation by means of nominal division quadtrees and octrees [J]. ACM Transactions on Graphics, 1985, 4(1): 41–59. DOI: https://doi.org/10.1145/3973.3975.

    Article  Google Scholar 

  38. WANG J, OLIVEIRA M M, XIE H, KAUFMAN A E. Surface reconstruction using oriented charges [C]// Proceeding of Computer Graphics. Stony Brook, NY, USA, 2005. DOI: https://doi.org/10.1109/CGI.2005.1500390.

  39. PULLI K, DUCHAMP T, HOPPE H, MCDONALD J, SHAPIRO L, STUETZLE W. Robust meshes from multiple range maps [C]// International Conference on Recent Advances in 3-D Digital Imaging and Modeling. Ottawa, Ontario, Canada, 1997. DOI: https://doi.org/10.1109/IM.1997.603867.

  40. HOPPE H, DEROSE T, DUCHAMP T, MCDONALD J, STUETZLE W. Surface reconstruction from unorganized points [C]// Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 1992. DOI: https://doi.org/10.1145/142920.134011.

  41. VO A V, HONG L T, LAEFER D F, BERTOLOTTO M. Octree-based region growing for point cloud segmentation [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104: 88–100. DOI: https://doi.org/10.1016/j.isprsjprs.2015.01.011.

    Article  Google Scholar 

  42. ARMESTO J, PARDIÑAS R J, LORENZO H, ARIAS P. Modelling masonry arches shape using terrestrial laser scanning data and nonparametric methods [J]. Engineering Structures, 2010, 32(2): 607–615. DOI: https://doi.org/10.1016/j.engstruct.2009.11.007.

    Article  Google Scholar 

  43. JRA-Japan Road Association. Manual for asphalt pavement [M]. Tokyo, Japan, 1989.

  44. FARIAS M M, SOUZA R O. Correlations and analyses of longitudinal roughness indices [J]. Road Materials and Pavement Design, 2009, 10(2): 399–415. DOI: https://doi.org/10.1080/14680629.2009.9690202.

    Article  Google Scholar 

  45. DIAZ J C F, JUDGE J, SLATTON K C, SHRESTHA R, CARTER W E, BLOOMQUIST D. Characterization of full surface roughness in agricultural soils using ground based LiDAR [C]// Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Honolulu, Hawaii, USA, 2010. DOI: https://doi.org/10.1109/IGARSS.2010.5652056.

  46. ZHANG A M, RUSSELL R A. Surface roughness measurement for outdoor mobile robotic applications [C]// Proceedings of Australasian Conference on Robotics and Automation. Canberra, Australia, 2004.

  47. YEN K S, AKIN K, LOFTON A, RAVANI B, LASKY T A. Using mobile laser scanning to produce digital terrain models of pavement surfaces [R]. California Department of Trans Portation: CA10–1113. http://ahmct.ucdavis.edu/pdf/UCD-ARR-10-11-30-01.pdf.

  48. PATTNAIK S B, HALLMARK S, SOULEYRETTE R. Collecting road inventory using LIDAR surface models [C]// Proceedings of Map India Conference. New Delhi, India, 2003.

  49. ZHANG K, FREY H C. Road grade estimation for on-road vehicle emissions modeling using LIDAR data [C]// Proceedings of Air & Waste Management Association Annual Meeting. Minneapolis, USA, 2005. DOI: https://doi.org/10.1080/10473289.2006.10464500.

  50. ALHASAN A, WHITE D J, BRABANTER K D. Spatial pavement roughness from stationary laser scanning [J]. International Journal of Pavement Engineering, 2017, 18(1): 83–96. DOI: https://doi.org/10.1080/10298436.2015.1065403.

    Article  Google Scholar 

  51. SAMET H. The quadtree and related hierarchical data tructures [J]. ACM Computer Surveys, 1984, 16(2): 187–260. DOI: https://doi.org/10.1145/356924.356930.

    Article  Google Scholar 

  52. KUMAR P, LEWIS P, MCELHINNEY C P, RAHMAN A A. An algorithm for automated estimation of road roughness from mobile laser scanning data [J]. Photogrammetric Record, 2015, 30(149): 30–45. DOI: https://doi.org/10.1111/phor.12090.

    Article  Google Scholar 

  53. MLS GT-4. Mobile mapping system GT-4 [EB/OL]. [2019-10-01]. https://www.aeroasahi.co.jp/english/equipment/detail.php?id=21.

  54. RIEGL VQ-450. High speed 2D laser scanner with online waveform processing [EB/OL]. [2019-05-24]. http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_VQ-450_rund_2014-09-02.pdf (accessed on 24 May 2019).

  55. EXAT-Expressway and Rapid Transit Authority of Thailand. Expressway inspection manual and maintenance procedure [M]. Bangkok, Thailand, 2006.

  56. TRUONG-HONG L, LAEFER D F. Quantitative evaluation strategies for urban 3D model generation from remote sensing data [J]. Computer & Graphics, 2015, 49: 82–91. DOI: https://doi.org/10.1016/j.cag.2015.03.001.

    Article  Google Scholar 

  57. The MathWorks. MATLAB function reference [M]. The Mathwork, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Ha Tran.

Additional information

Foundation item: Project(SIIT-AUN/SEED-Net-G-S1 Y16/018) supported by the Doctoral Asean University Network Program; Project supported by the Metropolitan Expressway Co., Ltd., Japan; Project supported by Elysium Co. Ltd.; Project supported by Aero Asahi Corporation, Co., Ltd.; Project supported by the Expressway Authority of Thailand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.H., Taweep, C. Automated extraction of expressway road surface from mobile laser scanning data. J. Cent. South Univ. 27, 1917–1938 (2020). https://doi.org/10.1007/s11771-020-4420-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4420-0

Key words

关键词

Navigation