Skip to main content
Log in

Effect of Temperature Gradient and Growth Velocity on Microstructure and Mechanical Properties on Zn–7Al–3Cu Ternary Eutectic Alloy

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In the present work, microstructure and mechanical properties of Zn–7Al–3Cu (wt%) ternary alloy are investigated depending on the temperature gradient and growth velocity. The alloy was prepared in the designated composition in a vacuum melting and casting furnace and then filled into the graphite sample moulds. The samples were directional solidified with various temperature gradients (6.7–10.7 K/mm) at a constant growth velocity (16.4 μm/s) and with various growth velocities (8.3–166.0 μm/s) at a constant temperature gradient (10.7 K/mm) in a Bridgman-type furnace. Microstructural images of solidified samples were taken with light microscope and scanning electron microscope. Eutectic spacings were measured from these images. Microhardness, ultimate tensile strength, yield strength and modulus elasticity values of each sample produced at various solidification parameters were also measured. The effect of temperature gradient and growth velocity on the eutectic spacing, microhardness, ultimate tensile strength, yield strength and modulus elasticity was determined using linear regression analysis. While the microhardness, ultimate tensile strength, yield strength and modulus elasticity values increased with increasing temperature gradient and growth velocity values or decreasing eutectic spacing, the elongation values decreased. Fractographic results show that the type of fracture is brittle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. G. Lin, R. Zhang, L. Wang, Y. Lei, J. He, Effects of stabilizing heat treatment on microstructures and creep behavior of Zn–10Al–2Cu–0.02Ti alloy. Trans. Nonferrous Met. Soc. China 23(1), 86–91 (2013)

    Article  CAS  Google Scholar 

  2. M. Aydın, T. Savaşkan, Fatigue properties of zinc–aluminium alloys in 3.5% NaCl and 1% HCl solutions. Int. J. Fatig. 26(1), 103–110 (2004)

    Article  Google Scholar 

  3. H. Li, Z. Li, Y. Liu, H. Jiang, Effect of zirconium on the microstructure and mechanical properties of Zn–4%Al hypoeutectic alloy. J. Alloys Compd. 592, 127–134 (2014)

    Article  CAS  Google Scholar 

  4. T. Savaşkan, G. Pürçek, S. Murphy, Sliding wear of cast zinc-based alloy bearings under static and dynamic loading conditions. Wear 252(9–10), 693–703 (2002)

    Article  Google Scholar 

  5. E.M. da Costa, C.E. da Costa, F.D. Vecchia, C. Rick, M. Scherer, C.A. dos Santos, B.A. Dedavid, Study of the influence of copper and magnesium additions on the microstructure formation of Zn–Al hypoeutectic alloys. J. Alloys Compd. 488, 89–99 (2009)

    Article  Google Scholar 

  6. F. Wang, B. Xiong, Y. Zhang, H. Liu, Z. Li, X. Li, C. Qu, Effect of Cu addition on microstructure and corrosion behavior of spray-deposited Zn–30Al alloy. Mater. Sci. Eng. A 532, 100–105 (2012)

    Article  CAS  Google Scholar 

  7. P. Choudhury, K. Das, S. Das, Evolution of as-cast and heat-treated microstructure of a commercial bearing alloy. Mater. Sci. Eng. A 398, 332–343 (2005)

    Article  Google Scholar 

  8. M. Al-Maharbi, I. Karaman, G. Pürçek, Flow response of a severe plastically deformed two-phase zinc-aluminum alloy. Mater. Sci. Eng. A 527, 518–525 (2010)

    Article  Google Scholar 

  9. B.K. Prasad, Microstructural alterations through heat treatment and its influence on wear response of a silicon containing zinc based alloy under different test conditions. Mater. Sci. Technol. 19(3), 327–335 (2003)

    Article  CAS  Google Scholar 

  10. V. Reveko, F. Lampert, G. Winther, P. Møller, Change of the decorative properties of zinc-plated zinc die castings over time. Int. J. Metalcast. 13, 130–136 (2019). https://doi.org/10.1007/s40962-018-0237-0

    Article  CAS  Google Scholar 

  11. T. Savaşkan, A.P. Hekimoğlu, Microstructure and mechanical properties of Zn–15Al-based ternary and quaternary alloys. Mater. Sci. Eng. A 603, 52–57 (2014)

    Article  Google Scholar 

  12. B. Krupinska, L. Dobrzanski, Z. Rdzawski, K. Labisz, Cooling rate influence on microstructure of the Zn–Al cast alloy. Arch. Mater. Sci. Eng. 43(1), 13–20 (2010)

    Google Scholar 

  13. M. Durman, S. Murphy, Precipitation of metastable ephsilon phase in a hypereutectic zinc-aluminium alloy containing copper. Acta Metall. 39(10), 2235–2242 (1991)

    Article  CAS  Google Scholar 

  14. M. Durman, S. Murphy, An electron-metallographic study of commercial zinc-based pressure diecasting alloy ZA–27. J. Mater. Sci. 32, 1603–1611 (1997)

    Article  CAS  Google Scholar 

  15. S. Alibabaie, R. Mahmudi, Microstructure and creep characteristics of Zn–3Cu–xAl ultra high-temperature lead-free solders. Mater. Des. 39, 397–403 (2012)

    Article  CAS  Google Scholar 

  16. F. Porter, Zinc Handbook: Properties, and Use in Design (Dekker, New York, 1991)

    Book  Google Scholar 

  17. T.J. Chen, Y. Hao, J. Sun, Y.D. Li, Effects of Mg and RE additions on the semi-solid microstructure of a zinc alloy ZA27. Sci. Technol. Adv. Mater. 4, 495–502 (2003)

    Article  CAS  Google Scholar 

  18. A. Türk, M. Durman, E.S. Kayalı, The effect of manganese on the microstructure and mechanical properties of zinc–aluminium based ZA–8 alloy. J. Mater. Sci. 42, 8298–8305 (2007)

    Article  Google Scholar 

  19. E.D. Jareno, M.J. Castro, S.I. Maldonado, F.A. Hernandez, The effects of Cu and cooling rate on the fraction and distribution of epsilon phase in Zn–4Al–(3–5.6)Cu alloys. J. Alloys Compd. 490, 524–530 (2010)

    Article  CAS  Google Scholar 

  20. R. Mojaver, H.R. Shahverdi, Relationship between cooling rate, microstructure features and wear behavior in end-chill cast Zn–27% Al alloys containing more than 2% Cu. Wear 271(11–12), 2899–2908 (2011)

    Article  CAS  Google Scholar 

  21. B.K. Prasad, Effects of partially substituting copper by silicon on the physical, mechanical, and wear properties of a Zn–37.5%Al based alloy. Mater. Charact. 44(3), 301–308 (2000)

    Article  CAS  Google Scholar 

  22. B.K. Prasad, Microstructure, mechanical properties and sliding wear characteristics of Zn-based alloys: effects of partially substituting Cu by Si. Metallkd. Z 88, 929–933 (1997)

    CAS  Google Scholar 

  23. D. Yousefi, R. Taghiabadi, M.H. Shaeri, P. Abedinzadeh, Enhancing the mechanical properties of Si particle reinforced ZA22 composite by Ti–B modification. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00447-w

    Article  Google Scholar 

  24. K. Kubota, T. Sato, R. Ninomiya, T. Ojiro, Solidification structure and strength of Zn–7Al–X Cu alloys. Imono (J. Jpn. Foundrym. Soc.) 67(8), 546–551 (1995)

    CAS  Google Scholar 

  25. S. Engin, U. Böyük, H. Kaya, N. Maraşlı, Directional solidification and physical properties measurements of the zinc-aluminum eutectic alloy. Int. J. Min. Met. Mater. 14(2), 659–664 (2011)

    Article  Google Scholar 

  26. H. Kaya, U. Böyük, S. Engin, E. Çadırlı, N. Maraşlı, Measurements of microhardness and thermal and electrical properties of the binary Zn–0.7 wt%Cu hypoperitectic alloy. J. Electron. Mater. 39(3), 303–311 (2010). https://doi.org/10.1007/s11664-009-1061-3

    Article  CAS  Google Scholar 

  27. Y.H. Zhu, W.B. Lee, S. To, Tensile deformation-induced phase transformation in cast Zn–Al-based alloy (ZnAl7Cu3). Mater. Res. Bull. 38(14), 1851–1858 (2003)

    Article  CAS  Google Scholar 

  28. G. Petzow, G. Effenberg, Ternary Alloys, A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams (Weinheim Press, New York, 1988)

    Google Scholar 

  29. A. Ourdjini, J. Liu, R. Elliott, Eutectic spacing selection in the Al–Cu system. Mater. Sci. Technol. 10(4), 312–318 (1994)

    Article  CAS  Google Scholar 

  30. J. Fan, X. Li, Y. Su, J. Guo, H. Fu, The microstructure parameters and microhardness of directionally solidified Ti–43Al–3Si alloy. J. Alloys Compd. 506, 593–599 (2010)

    Article  CAS  Google Scholar 

  31. U. Böyük, N. Maraşlı, The microstructure parameters and microhardness of directionally solidified Sn–Ag–Cu eutectic alloy. J. Alloys Compd. 485, 264–269 (2009)

    Article  Google Scholar 

  32. U. Böyük, N. Maraşlı, E. Çadırlı, H. Kaya, K. Keşlioğlu, Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al–Cu–Ag eutectic alloy. Curr. Appl. Phys. 12(1), 7–10 (2012). https://doi.org/10.1016/j.cap.2011.0

    Article  Google Scholar 

  33. J. Fan, X. Li, Y. Su, R. Chen, J. Gou, H. Fu, Dependency of microstructure parameters and microhardness on the temperature gradient for directionally solidified Ti–49Al alloy. Mater. Chem. Phys. 130(3), 1232–1238 (2011)

    Article  CAS  Google Scholar 

  34. E. Çadırlı, U. Böyük, H. Kaya, N. Maraşlı, Determination of mechanical, electrical and thermal properties of the Sn–Bi–Zn ternary alloy. J. Non-Cryst. Solids 357(15), 2876–2881 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.03.025

    Article  CAS  Google Scholar 

  35. X. Hu, K. Li, F. Ai, Research on lamellar structure and micro-hardness of directionally solidified Sn–58Bi eutectic alloy. China Foundry 9(4), 360–365 (2012)

    CAS  Google Scholar 

  36. F. Vnuk, M. Sahoo, D. Baragar, R.W. Smith, Mechanical properties of the Sn–Zn eutectic alloys. J. Mater. Sci. 15(10), 2573–2583 (1980)

    Article  CAS  Google Scholar 

  37. M. Şahin, T. Şensoy, E. Çadırlı, Microstructural evolution and mechanical properties of Sn–Bi–Cu ternary eutectic alloy produced by directional solidification. Mater. Res. 21(2), e20170901 (2018). https://doi.org/10.1590/1980-5373-mr-2017-0901

    Article  CAS  Google Scholar 

  38. J. Lapin, L. Ondrúš, M. Nazmy, Directional solidification of intermetallic Ti–46Al–2W–0.5Si alloy in alumina moulds. Intermetallics 10(10), 1019–1031 (2002)

    Article  CAS  Google Scholar 

  39. J. Fan, X. Li, Y. Su, J. Guo, H. Fu, Dependency of microhardness on solidification processing parameters and microstructure characteristics in the directionally solidified Ti–46Al–0.5W–0.5Si alloy. J. Alloys Compd. 504(1), 60–64 (2010)

    Article  CAS  Google Scholar 

  40. X. Hu, Y. Li, Y. Liu, Z. Min, Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification. J. Alloys Compd. 625, 241–250 (2015)

    Article  CAS  Google Scholar 

  41. T. Hosch, R.E. Napolitano, The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al-Si eutectic alloys. Mater. Sci. Eng. A. 528(1), 226–232 (2010)

    Article  Google Scholar 

  42. E. Çadırlı, M. Sahin, Y. Turgut, Characterization of a directionally solidified Sn–Pb–Sb ternary eutectic alloy. Metallogr. Microstruct. Anal. 4(4), 286–297 (2015). https://doi.org/10.1007/s13632-015-0211-7

    Article  CAS  Google Scholar 

  43. Z.Q. Li, X.R. Zhang, S.Y. Zhang, Z.H. Shen, Determination of the elastic constants of metal-matrix composites by a laser ultrasound technique. Compos. Sci. Technol. 61(10), 1457–1463 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Niğde Ömer Halisdemir University, Scientific Research Project Unit Contract No: FEB 2011/08. The authors are grateful to Niğde Ömer Halisdemir University Scientific Research Project Unit for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Çadırlı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmazer, İ., Çadırlı, E. Effect of Temperature Gradient and Growth Velocity on Microstructure and Mechanical Properties on Zn–7Al–3Cu Ternary Eutectic Alloy. Inter Metalcast 15, 664–675 (2021). https://doi.org/10.1007/s40962-020-00500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00500-8

Keywords

Navigation