Skip to main content
Log in

Microstructural Evolution and Solidification Behavior of Functionally Graded In Situ Al–Cr Composites During Centrifugal Casting

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Functionally graded Al-based composite tubes, reinforced by Al–Cr intermetallic particles, were prepared using horizontal centrifugal casting. A liquid Al–Cr alloy containing 1, 3, and 6 wt% chromium was poured into the centrifugally rotating mold. The present study focused on the effectiveness of process parameters, including mold temperature and rotational speed, on the graded profile of in situ formed particles during centrifugal casting of Al–Cr alloys. Detailed microstructure analysis revealed that the Al–Cr intermetallic compounds formed in situ in the Al-matrix, and segregated onto the outer surface of the tube. Identified intermetallic particles were Al11Cr2 and Al7Cr, with more accumulation of the former near the outer surface. The impacts of the process parameters on the thickness of the particle segregation region were found to be dependent on the initial Cr content. At higher Cr content, the resulted gradient was steeper. Brinell hardness test showed an increasing trend of hardness corresponding with the increment of the area fraction of the intermetallic particles. The maximum hardness (54 HB) was achieved at the outermost region of the centrifugally cast Al-6wt%Cr composite at a mold temperature of 600 °C and a rotational speed of 1800 rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials Design, Processing and Applications, 1st edn. (Springer, Boston, 1999), pp. 40–54. https://doi.org/10.1007/978-1-4615-5301-4

    Book  Google Scholar 

  2. B. Kieback, A. Neubrand, H. Riedel, Mater. Sci. Eng., A 362, 81–105 (2003). https://doi.org/10.1016/S0921-5093(03)00578-1

    Article  CAS  Google Scholar 

  3. A.B. Kasaeian, S.N. Nasiri Vatan, S. Daneshmand, Proc. Eng. 14, 3199–3204 (2011). https://doi.org/10.1016/j.proeng.2011.07.404

    Article  Google Scholar 

  4. A. Mehditabar, G.H. Rahimi, M. Krol, S.E. Vahdat, Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-019-00401-5

    Article  Google Scholar 

  5. A. Vajd, A. Samadi, Int. J. Metalcast. (2019). https://doi.org/10.1007/s40962-019-00394-1

    Article  Google Scholar 

  6. J.F. Álvarez Antolín, J. Asensio Lozano, C.H. Álvarez Pérez, Int. J. Metalcast. (2017). https://doi.org/10.1007/s40962-016-0087-6

    Article  Google Scholar 

  7. M. Yousefi, H. Doostmohammadi, S.N. Appl, Science 1, 1190–1200 (2019). https://doi.org/10.1007/s42452-019-1217-6

    Article  CAS  Google Scholar 

  8. T.P.D. Rajan, B.C. Pai, Mater. Sci. Forum 690, 157–161 (2011). https://doi.org/10.4028/www.scientific.net/MSF.690.157

    Article  CAS  Google Scholar 

  9. N. Radhika, R. Raghu, Trans. Nonferrous Met. Soc. China 26, 905–916 (2016). https://doi.org/10.1016/S1003-6326(16)64185-7

    Article  CAS  Google Scholar 

  10. Q. Dong, Z. Yin, H. Li, G. Gao, Y. Mao, Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00429-y

    Article  Google Scholar 

  11. T. Ogawa, Y. Watanabe, H. Sato, I.-S. Kim, Y. Fukui, Compos. Part A-Appl. Sci. 37(12), 2194–2200 (2006). https://doi.org/10.1016/j.compositesa.2005.10.002

    Article  CAS  Google Scholar 

  12. D. Vojteˇch, J. Verner, J. Serak, F. Šimančík, M. Balog, J. Nagy, Mater. Sci. Eng., A 458, 371–380 (2007). https://doi.org/10.1016/j.msea.2006.12.136

    Article  CAS  Google Scholar 

  13. M.S. Archana, N. Hebalkar, K. Radha, J. Joardar, J. Alloys Compd. 501, 18–24 (2010). https://doi.org/10.1016/j.jallcom.2010.04.046

    Article  CAS  Google Scholar 

  14. P. Tsakiropoulos, R.C. Pratt, H. Jones, J.E. Restall, R.W. Gardiner, Mater. Sci. Eng. 98, 143–147 (1988). https://doi.org/10.1016/0025-5416(88)90143-7

    Article  CAS  Google Scholar 

  15. S. Datta, N.R. Bandyopadhyay, S. Bandyopadhyay, M.K. Banerjee, Compos. Sci. Technol. 60, 451–456 (2000). https://doi.org/10.1016/S0266-3538(99)00145-1

    Article  CAS  Google Scholar 

  16. K. Godlewski, E. Godlewska, Oxid. Met. 26, 125–138 (1986). https://doi.org/10.1007/BF00664277

    Article  CAS  Google Scholar 

  17. J. Esquivel, K.A. Darling, H.A. Murdoch, R.K. Gupta, Metall. Mat. Trans. A 49, 3058–3065 (2018). https://doi.org/10.1007/s11661-018-4620-5

    Article  CAS  Google Scholar 

  18. B.A. Shollock, A. Cerezo, E.D. Boyes, B. Cantor, G.D.W. Smith, Mater. Sci. Eng. 98, 197–200 (1998). https://doi.org/10.1016/0025-5416(88)90154-1

    Article  Google Scholar 

  19. I.I. Tashlykova-Bushkevich, G. Itoh, Mater. Sci. Forum 783–786, 264–269 (2012). https://doi.org/10.4028/www.scientific.net/MSF.783-786.264

    Article  CAS  Google Scholar 

  20. J.L. Murray, The Al-Cr (aluminum-chromium) system. J. Phase Equilib. 19, 367 (1998). https://doi.org/10.1007/BF02735058

    Article  Google Scholar 

  21. B. Grégoire, G. Bonnet, F. Pedraza, Intermetallics 81, 80–89 (2017). https://doi.org/10.1016/j.intermet.2017.03.001

    Article  CAS  Google Scholar 

  22. E. Panda, S.P. Mehrotra, D. Mazumdar, Metall. Mat. Trans. A 37(5), 1675–1687 (2006). https://doi.org/10.1007/s11661-006-0109-8

    Article  Google Scholar 

  23. G.E. Totten, D.S. MacKenzie, Handbook of Aluminum, Vol. 1: Physical Metallurgy and Processes (CRC Press, Marcel Dekker, Inc., New York, 2003), p. 116

    Book  Google Scholar 

  24. R. Abbaschian, L. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles, 4th edn. (Cengage Learning, USA, Stamford, 2009), pp. 334–336

    Google Scholar 

  25. K.A. Jackson, J. Cryst. Growth 264, 519–529 (2004). https://doi.org/10.1016/j.jcrysgro.2003.12.074

    Article  CAS  Google Scholar 

  26. A. Almeida, P.A. Carvalho, R. Vilar, S.F.J. Met, Science 1, 1–12 (2017)

    Google Scholar 

  27. M. Yousefi, H. Doostmohammadi, J. Alloys Compd. 766, 721–728 (2018). https://doi.org/10.1016/j.jallcom.2018.07.011

    Article  CAS  Google Scholar 

  28. S. Ji, W. Yang, F. Gao, D. Watson, Z. Fan, Light Metals 2013 (Springer, Berlin, 2016), pp. 317–322

    Book  Google Scholar 

  29. T.P.D. Rajan, R.M. Pillai, B.C. Pai, Int. J. Cast Met. Res. 21, 214–218 (2008). https://doi.org/10.1179/136404608X361972

    Article  CAS  Google Scholar 

  30. M.J. Cooper, Acta Cryst. 13, 257–263 (1960). https://doi.org/10.1107/S0365110X60000571

    Article  CAS  Google Scholar 

  31. M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, W.A. Wakeham, J. Phys. Chem. Ref. Data 35(1), 285–300 (2006). https://doi.org/10.1063/1.2149380

    Article  CAS  Google Scholar 

  32. P. Samba, S. Raju, S.P. Mehrotra, Mater. Trans., JIM 41, 1626–1635 (2000). https://doi.org/10.2320/matertrans1989.41.1626

    Article  Google Scholar 

  33. J. Park, H. Kim, Int. J. Metalcast. 11, 802–811 (2017). https://doi.org/10.1007/s40962-016-0127-2

    Article  Google Scholar 

  34. S. Kumar, V.S. Sarma, B.S. Murty, Metall. Mater. Trans. A 41, 242–254 (2009). https://doi.org/10.1007/s11661-009-0063-3

    Article  CAS  Google Scholar 

  35. J.W. Gao, C.Y. Wang, Mater. Sci. Eng., A 292, 207–215 (2000). https://doi.org/10.1016/S0921-5093(00)01014-5

    Article  Google Scholar 

  36. Z.H. Melgarejo, O.M. Suárez, K. Sridharan, Compos. Part A Appl. Sci. Manuf. 39, 1150–1158 (2008). https://doi.org/10.1016/j.compositesa.2008.04.002

    Article  CAS  Google Scholar 

  37. T.W. Gustafson, P.C. Panda, G. Song, R. Raj, Acta Mater. 45, 1633–1643 (1997). https://doi.org/10.1016/S1359-6454(96)00277-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HD contributed to the conception and main idea. MY designed and performed the experiments. MY was involved in literature survey. HD was the supervisor of the work. MY collected the data. HD and MY analyzed and interpreted the data. MY was involved in writing. HD performed the substantial polishing of English and revising the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Maryam Yousefi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, M., Doostmohammadi, H. Microstructural Evolution and Solidification Behavior of Functionally Graded In Situ Al–Cr Composites During Centrifugal Casting. Inter Metalcast 15, 650–663 (2021). https://doi.org/10.1007/s40962-020-00499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00499-y

Keywords

Navigation