Skip to main content
Log in

Analysis and Control of Blood Glucose Situation for Diabetic Patients Based on Interval Type-2 Fuzzy Sets

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

For diabetes mellitus (DM), the technology of blood glucose monitoring provides detection information for patients and helps sufferers to ameliorate bad states. Management rules and intervention measures, which are consistent with blood glucose situation, help to control blood glucose stability, establish a healthy lifestyle, and prevent the occurrence of DM complications. Formulating effective rules and measures is the key to the blood sugar management. What is more, the analysis of blood glucose situation is beneficial to the formulation of management rules and intervention measures. In this paper, interval type-2 fuzzy sets (IT2 FSs) and fuzzy comprehension evaluation are applied in the analysis of blood sugar situation. Moreover, dynamic fuzzy rules are built to provide the corresponding blood glucose management rules. Linguistic dynamic systems (LDS) are used to describe and analyze the evolution process of blood glucose situation. Finally, the analysis results indicate the method is applicable and valuable for actual management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Patek, S.D., Magni, L., Dassau, E., et al.: Modular closed-loop control of diabetes. IEEE Trans Biomed Eng. 59(11), 2986–2999 (2012)

    Google Scholar 

  2. Klein, H.A., Meininger, A.R.: Self management of medication and diabetes: cognitive control. IEEE Trans Syst Man Cybern Part A Syst Humans. 34(6), 718–725 (2004)

    Google Scholar 

  3. Bellazzi, R., Magni, P., De Nicolao, G.: Bayesian analysis of blood glucose time series from diabetes home monitoring. IEEE Trans Biomed Eng. 47(7), 971–975 (2000)

    Google Scholar 

  4. Zarkogianni, K., Litsa, E., Mitsis, K., et al.: A Review of emerging technologies for the management of diabetes mellitus. IEEE Trans Biomed Eng. 62(12), 2735–2749 (2015)

    Google Scholar 

  5. Pearson, S.M., Ajjan, R.A.: Flash glucose monitoring in younger individuals with diabetes: accuracy and patient experience in real-world settings. Diabetes Technol Therapeutics. 20(1), 4–5 (2018)

    Google Scholar 

  6. Zhu, Y.Z., Meng, X.R., Chen, Y.Q., et al.: Self-served and fully automated biochemical detection of finger-prick blood at home using a portable microfluidic analyzer. Sensors Actuators B Chem. 303, 127262 (2020)

    Google Scholar 

  7. So, C.-F., Choi, K.-S., Wong, T.K., et al.: Recent advances in noninvasive glucose monitoring. Med Devices Evid Res. 5(1), 45–52 (2012)

    Google Scholar 

  8. Chee, F., Fernando, T., Van Heerden, P.V.: Closed-loop glucose control in critically ill patients using continuous glucose monitoring system (CGMS) in real time. IEEE Trans Inform Technol Biomed. 7(1), 43–53 (2003)

    Google Scholar 

  9. Cengiz, E., Sherr, J.L., Weinzimer, S.A., et al.: New-generation diabetes management: glucose sensor-augmented insulin pump therapy. Expert Rev Med Devices. 8(4), 449–458 (2011)

    Google Scholar 

  10. Castillo, O., Melin, P., Kacprzyk, J., et al.: Type-2 fuzzy logic: theory and applications. In: Proceedings - 2007 IEEE International Conference on Granular Computing, GrC 2007, pp. 145–150 (2007)

  11. Mo, H., Zhou, M., Wu, Z.L.: T2 FSs based on time-varying universe of discourse and its applications. ICIC Express Lett. 7(6), 1749–1754 (2013)

    Google Scholar 

  12. Mo, H., Wang, T.: Computing with words in generalized interval type-2 fuzzy sets. Acta Automatica Sinica. 38(5), 707–715 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Mo, H., Wang, F.-Y., Zhou, M., et al.: Footprint of uncertainty for type-2 fuzzy sets. Inform Sci. 272, 96–110 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Zarandi, M.H.F., Khadangi, A., Karimi, F.: A computer-aided type-II fuzzy image processing for diagnosis of meniscus tear. J Digital Imaging. 29(6), 677–695 (2016)

    Google Scholar 

  15. Antonelli, M., Bernardo, D., Hagras, H., et al.: Multiobjective evolutionary optimization of type-2 fuzzy rule-based systems for financial data classification. IEEE Trans Fuzzy Syst. 25(2), 249–264 (2017)

    Google Scholar 

  16. Pratama, M., Lu, J., Lughofer, E., et al.: An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks. IEEE Trans Fuzzy Syst. 25(5), 1175–1192 (2017)

    Google Scholar 

  17. Kim, C.-J., Chwa, D.: Obstacle avoidance method for wheeled mobile robots using interval type-2 fuzzy neural network. IEEE Transactions on Fuzzy Systems. 23(3), 677–687 (2015)

    Google Scholar 

  18. Golsefid, S.M.M., Zarandi, M.H.F., Turksen, I.B.: Multi-central general type-2 fuzzy clustering approach for pattern recognitions. Inf. Sci. 328, 172–188 (2016)

    MATH  Google Scholar 

  19. Guzmán, J.C., Melin, P., Prado-Arechiga, G.: Design of interval type-2 fuzzy systems for classification of blood pressure load. In: Castillo, O., Melin, P. (eds.) Hybrid intelligent systems in control, pattern recognition and medicine. Studies in computational intelligence, vol 827. Springer, Cham (2020)

  20. Guzmán, J.C., Melin, P., Prado-Arechiga, G.: Design of a Fuzzy System for Classification of Blood Pressure Load. In: Kóczy L., Medina-Moreno J., Ramírez-Poussa E., Šostak A. (eds) Computational Intelligence and Mathematics for Tackling Complex Problems. Studies in Computational Intelligence, vol 819. Springer, Cham (2020)

  21. Ontiveros-Robles, E., Melin, P.: Toward a development of general type-2 fuzzy classifiers applied in diagnosis problems through embedded type-1 fuzzy classifiers. Soft Comput. 24(1), 83–99 (2020)

    Google Scholar 

  22. Ontiveros, E., Melin, P., Castillo, O.: Comparative study of interval Type-2 and general Type-2 fuzzy systems in medical diagnosis. Inf. Sci. 525, 37–53 (2020)

    MathSciNet  Google Scholar 

  23. Fazel Zarandi, M.H., Soltanzadeh, S., Mohammadi, A., et al.: Designing a general type-2 fuzzy expert system for diagnosis of depression. Appl. Soft Comput. J. 80, 329–341 (2019)

    Google Scholar 

  24. Abdolkarimzadeh, M., Fazel Zarandi, M.H., Castillo, O.: Interval type II fuzzy rough set rule based expert system to diagnose chronic kidney disease. Commun. Comp. Inf. Sci. 831, 559–568 (2018)

    Google Scholar 

  25. Rahimi Damirchi-Darasi, S., Fazel Zarandi, M.H., Turksen, I.B., et al.: Type-2 fuzzy rule-based expert system for diagnosis of spinal cord disorders. Scientia Iranica. 26(1E), 455–471 (2019)

    Google Scholar 

  26. Ramirez, E., Melin, P., Prado-Arechiga, G.: Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification. Expert Syst. Appl. 126, 295–307 (2019)

    Google Scholar 

  27. Castillo, O., Muhuri, P.K., Melin, P., et al.: Emerging Issues and Applications of Type-2 Fuzzy Sets and Systems. Eng. Appl. Artificial Intell. 90, (2020)

  28. Ochoa, P., Castillo, O., Soria, J.: Optimization of fuzzy controller design using a Differential Evolution algorithm with dynamic parameter adaptation based on Type-1 and Interval Type-2 fuzzy systems. Soft Comput. 24(1), 193–214 (2020)

    Google Scholar 

  29. Castillo, O., Melin, P., Valdez, F., Soria, J., et al.: Shadowed Type-2 Fuzzy systems for dynamic parameter adaptation in harmony search and Differential Evolution Algorithms. Algorithms. 12(1), 17 (2019)

    Google Scholar 

  30. Castillo, O., Valdez, F., Soria, J., et al.: Comparative study in fuzzy controller optimization using bee colony, differential evolution, and harmony search algorithms. Algorithms. 12(1), 9 (2019)

    Google Scholar 

  31. Ruiz-Garcia, G., Hagras, H., Pomares, H., et al.: Toward a fuzzy logic system based on general forms of interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 27(12), 2381–2395 (2019)

    Google Scholar 

  32. Mohammed, H.A., Hagras, H.: Towards Developing Type 2 Fuzzy Logic Diet Recommendation System for Diabetes. In: Proceedings of the 2018 10th Computer Science and Electronic Engineering Conference, pp. 56–59 (2018)

  33. Starkey, A., Hagras, H., Shakya, S., et al.: IPatch: a many-objective type-2 fuzzy logic system for field workforce optimization. IEEE Trans. Fuzzy Syst. 27(3), 502–514 (2019)

    Google Scholar 

  34. Mohammadzadeh, A., Kayacan, E.: A novel fractional-order type-2 fuzzy control method for online frequency regulation in ac microgrid. Eng. Appl. Artificial Intell. 90, 103483 (2020)

    Google Scholar 

  35. Beke, A., Kumbasar, T.: Type-2 fuzzy logic-based linguistic pursuing strategy design and its deployment to a real-world pursuit evasion game. IEEE Trans. Cybern. 50(1), 211–221 (2020)

    Google Scholar 

  36. Mohammadzadeh, A., Kumbasar, T.: A new fractional-order general type-2 fuzzy predictive control system and its application for glucose level regulation. App. Soft Comput. J. 91, 106241 (2020)

    Google Scholar 

  37. Wu, D.R.: On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 20(5), 832–848 (2012)

    Google Scholar 

  38. Wu, D.R., Mendel, J.M.: Recommendations on designing practical interval type-2 fuzzy systems. Eng. Appl. Artificial Intell. 85, 182–193 (2019)

    Google Scholar 

  39. Wang, P.-Z.: Fuzzy set and its application. Shanghai Press of Science and Technology, Shanghai (1983). (in chinese)

    Google Scholar 

  40. Wang, F.-Y.: Modeling, analysis, and synthesis of linguistic dynamic system: a computational theory. In: Proceedings Of IEEE International Workshop on Architecture for Semiotic Modeling and Situation Control in Large Complex System. Monterey, 173–178 (1995)

  41. Wang, F.-Y.: On the abstraction of conventional dynamic systems: from numberical analysis to linguistc analysis. Inform. Sci. 171, 233–259 (2005)

    MathSciNet  Google Scholar 

  42. Mo, H., Wang, F.-Y.: Linguistic dynamical systems based on computing with words and their stabilities. Sci. China F Series Inform. Sci. 52(5), 780–796 (2009)

    MATH  Google Scholar 

  43. Zadeh, L.A.: Fuzzy logic=computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)

    Google Scholar 

  44. Wang, F.-Y.: Outline of a computational theory for linguistic dynamic systems: towards computing with words. Int. J. Intell. Control Syst. 2(2), 211–224 (1998)

    Google Scholar 

  45. Mo, H.: Linguistic dynamic orbits in the time varying universe of discourse. Acta Automatica Sinica. 38(10), 1585–1594 (2012)

    MathSciNet  Google Scholar 

  46. Mo, H., Wang, F.-Y.: Linguistic dynamic systems and type-2 fuzzy logic. China Science and Technology Press, Beijing (2013) (in chinese)

  47. Wang, F.-Y.: Computing with words and a framework for computational linguistic dynamic systems. Pattern Recognit. Artificial Intell. 14(4), 377–384 (2001)

    Google Scholar 

  48. Wang, F.-Y., Lin, Y.-T., Pu, J.-B.: Linguistic dynamic systems and computing with words for complex systems. Proc. IEEE Int. Conference Syst. Man Cybern. 42(4), 481–494 (2016)

    Google Scholar 

  49. Shamoon, H.: The relationship of glycemic exposure ( HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 44(8), 968–983 (1995)

    Google Scholar 

  50. Skyler, J.S., Bergenstal, R., Bonow, R.O., et al.: Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA Diabetes Trials: a position statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. J Am. Coll. Cardiol. 53(3), 298–304 (2009)

    Google Scholar 

  51. Lindgren, P., Lindström, J., Tuomilehto, J., et al.: Lifestyle intervention to prevent diabetes in men and women with impaired glucose tolerance is cost-effective. Int. J. Technol. Assess. Health Care. 23(2), 177–183 (2007)

    Google Scholar 

  52. Wagnild, G., MacCart, J.G., Mitchell, S., et al.: A telecommunications intervention for frontier patients with diabetes. Telemed. e-Health. 17(8), 793–800 (2008)

    Google Scholar 

  53. Karen, C., Warren, R., Scuffham, P., et al.: Randomised controlled trial of an in-home monitoring intervention to improve health outcomes for type 2 diabetes: study protocol. Studies Health Technol. Inform. 182, 43–51 (2012)

    Google Scholar 

  54. Hussain, M., Zaidan, A.A., Zidan, B.B., et al.: Conceptual framework for the security of mobile health applications on Android platform. Telematics Inform. 35(5), 1335–1354 (2018)

    Google Scholar 

  55. Silva, B.M.C., Rodrigues, J.J.P.C., Lopes, I.M.C., et al.: A novel cooperation strategy for mobile health applications. IEEE J. Selected Areas Commun. 31(9), 28–36 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Mo, H. & Wang, FY. Analysis and Control of Blood Glucose Situation for Diabetic Patients Based on Interval Type-2 Fuzzy Sets. Int. J. Fuzzy Syst. 23, 1179–1193 (2021). https://doi.org/10.1007/s40815-020-00918-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00918-6

Keywords

Navigation