Skip to main content
Log in

Method for Experimental Data Processing Concerning Chemical Reaction Rates in Low-Atomic Gases

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A new method for joint processing of experimental data from various laboratories based on their approximation by the generalized Arrhenius law is proposed. The method is based on the construction of a system of functions that are orthogonal on a given set of points with arbitrary weights. As a result, the confidence intervals of the approximation coefficients can be estimated and the number of terms required for the approximation can be correctly determined. The performance of the method is demonstrated as applied to reactions of hydrogen combustion in air that are important at \(T < 1000\) K. High accuracy of reaction rate approximation is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. F. Stocker, D. Qin, G.-K. Plattner, et al., IPCC, 2013: Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK, 2013).

    Google Scholar 

  2. S. Mailler, L. Menut, D. Khvorostyanov, et al., “CHIMERE 2013: A model for regional atmospheric composition modeling,” GeoSci. Model Dev. 10, 2397–2423 (2017).

    Article  Google Scholar 

  3. L. Menut, B. Bessagnet, D. Khvorostyanov, et al., “CHIMERE-2017: From urban to hemispheric chemistry-transport modeling,” GeoSci. Model Dev. 6, 981–1028 (2013).

    Article  Google Scholar 

  4. K. W. Appel, S. L. Napelenok, K. M. Foley, et al., “Description and evaluation of the community multiscale air quality (CMAQ) modeling system version 5.1,” GeoSci. Model Dev. 10, 1703–1732 (2017).

    Article  Google Scholar 

  5. F. Wagner and W. Schoepp, “Comparison of the RAINS emission control cost curves for air pollutants with emission control costs computed by the GAINS model,” IIASA Interim Report IR-07-0082007 (Laxenburg, Austria, 2007). http://pure.iiasa.ac.at/id/eprint/8447/

  6. M. Prather, D. Ehhalt, F. Dentener, et al., “Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change,” in Climate Change 2001: The Scientific Basis (Cambridge University Press, Cambridge, UK, 2001), Chapter 4.

    Google Scholar 

  7. C. F. Melius, Chemistry and Physics of Energetic Materials (Kluwer Academic, Dordrecht, 1990).

    Google Scholar 

  8. F. E. Harris, “Quantum chemistry,” Ann. Rev. Phys. Chem. 23 (1), 415–438 (1972).

    Article  Google Scholar 

  9. J. N. Murrell, S. Carter, S. C. Farantos, et al., Molecular Potential Energy Functions (Wiley, New York, 1984).

    Google Scholar 

  10. P. G. Robinson and K. A. Holbrook, Monomolecular Reactions (Wiley-Interscience, London, 1972).

    Google Scholar 

  11. V. N. Kondrat’ev and E. E. Nikitin, Kinetics and Mechanism of Gas-Phase Reactions (Nauka, Moscow, 1974).

    Google Scholar 

  12. D. F. Davidson and R. K. Hanson, “Interpreting shock tube ignition data,” Int. J. Chem. Kinet. 36, 510–523 (2004).

    Article  Google Scholar 

  13. S. C. Barton and J. E. Dove, “Mass spectrometric studies of chemical reactions in shock waves: The thermal decomposition of nitrous oxide,” Can. J. Chem. 47, 521 (1969).

    Article  Google Scholar 

  14. P. Frank and Th. Just, “High Temperature Reaction Rate for H + O2 → OH + O and OH + H2 → H2O + H,” Ber. Bunsenges. Phys. Chem. 89, 181 (1985).

    Article  Google Scholar 

  15. F. Westley, Tables of Recommended Rate Constants for Chemical Reactions Occurring in Combustion (National Standard Reference Data Series, NSRDS-NB, 67, 1980.

  16. NIST Chemical Kinetics Database: Standard Reference Database 17-2Q98 (NIST, Gaithersburg, MD, US, 1998). http://kinetics.nist.gov/kinetics/

  17. J. B. Burkholder, S. P. Sander, J. P. D. Abbatt, et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation, No. 18, JPL Publication 15–10, Jet Propulsion Laboratory, Pasadena, 2015. http://jpldataeval.jpl.nasa.gov

    Google Scholar 

  18. G. P. Smith, D. M. Golden, and M. Frenklach, Berkeley University of California, Gas Research Institute, GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/

  19. D. L. Baulch, C. T. Bowman, C. J. Cobos, et al., “Evaluated kinetic data for combustion modeling: Supplement II,” J. Phys. Chem. Ref. Data 34 (3), 757 (2005).

    Article  Google Scholar 

  20. L. B. Ibragimova, G. D. Smekhov, and O. P. Shatalov, “Comparative analysis of chemical reaction rates describing combustion of hydrogen oxygen mixtures,” Fiz.-Khim. Kinetics Gas. Din. 8, 1–25 (2009). www.chemphys.edu.ru/pdf/2009-06-29-01.pdf

  21. U. Mass and J. Warnatz, “Ignition processes in hydrogen–oxygen mixtures,” Combust. Flame 74, 53 (1988).

    Article  Google Scholar 

  22. J. A. Miller and C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Progr. Energy Combust. Sci. 15 (4), 287–338 (1989).

    Article  Google Scholar 

  23. S. J. Klippenstein, L. B. Harding, B. Ruscic, et al., “Thermal decomposition of NH2OH and subsequent reactions: Ab initio transition state theory and reflected shock tube experiments,” J. Phys. Chem. A 113, 10241 (2009).

    Article  Google Scholar 

  24. E. Yu. Dnestrovskaya and N. N. Kalitkin, Preprint No. 181, IPM im. M.V. Keldysha AN SSSR (Keldysh Inst. of Applied Mathematics, USSR Academy of Sciences Moscow, 1987).

  25. S. C. Baber and A. M. Dean, “N2O dissociation behind reflected shock waves,” Int. J. Chem. Kinet. 7, 381 (1975).

    Article  Google Scholar 

  26. V. P. Balakhnine, J. Vandooren, and P. J. Van Tiggelen, “Reaction mechanism and rate constants in lean hydrogen-nitrous oxide flames,” Combust. Flame 28, 165 (1977).

    Article  Google Scholar 

  27. A. M. Dean, “Shock tube studies of the N2O/Ar and N2O/H2/Ar systems,” Int. J. Chem. Kinet. 8, 459 (1976).

    Article  Google Scholar 

  28. H. Endo, K. Glaenzer, and J. Troe, “Shock wave study of collisional energy transfer in the dissociation of nitrogen dioxide, nitrosyl chloride, ozone, and nitrous oxide,” J. Phys. Chem. 83, 2083 (1979).

    Article  Google Scholar 

  29. E. S. Fishburne and R. Edse, “Shock-tube study of nitrous oxide decomposition,” J. Chem. Phys. 41, 1297 (1964).

    Article  Google Scholar 

  30. N. Fujii, S. Uchida, H. Sato, et al., “High-temperature reaction of NH3–N2O system in shock waves,” Bull. Chem. Soc. Jpn. 59, 3431 (1986).

    Article  Google Scholar 

  31. N. Fujii, S. Sagawai, T. Sato, et al., “Study of the thermal dissociation of N2O and CO2 using O(3P) atomic resonance absorption spectroscopy,” J. Phys. Chem. 93, 5474 (1989).

    Article  Google Scholar 

  32. S. Javoy, R. Mevel, and C. E. Paillard, “A study of N2O decomposition rate constant at high temperature: Application to the reduction of nitrous oxide by hydrogen,” Int. J. Chem. Kinet. 41, 357 (2009).

    Article  Google Scholar 

  33. W. Jost, K. W. Michel, J. Troe, et al., “Untersuchung des Thermischen Zerfalls von N2O in Stoßwellen,” Z. Naturforsch. A: Phys. Sci. 19, 59 (1964).

    Article  Google Scholar 

  34. W. H. Lipkea, D. Milks, and R. A. Matula, “Nitrous oxide decomposition and its reaction with atomic oxygen,” Combust. Sci. Technol. 6, 257 (1973).

    Article  Google Scholar 

  35. J. V. Michael and K. P. Lim, “Rate constants for the N2O reaction system: Thermal decomposition of N2O; N + NO → N2 + O; and implications for O + N2 → NO + N,” J. Chem. Phys. 97, 3228 (1992).

    Article  Google Scholar 

  36. A. P. Modica, “Kinetics of the nitrous oxide decomposition by mass spectrometry: A study to evaluate gas-sampling methods behind reflected shock waves,” J. Phys. Chem. 69, 2111 (1965).

    Article  Google Scholar 

  37. J. P. Monat, R. K. Hanson, and C. H. Kruger, “Kinetics of nitrous oxide decomposition,” Combust. Sci. Technol. 16, 21 (1977).

    Article  Google Scholar 

  38. M. Rohrig, E. L. Petersen, D. F. Davidson, et al., “The pressure dependence of the thermal decomposition of N2O,” Int. J. Chem. Kinet. 28, 599 (1996).

    Article  Google Scholar 

  39. M. Rohrig, E. L. Petersen, D. F. Davidson, et al., “A shock tube study of the pyrolysis of NO2,” Int. J. Chem. Kinet. 29, 484 (1997).

    Google Scholar 

  40. S. K. Ross, J. W. Sutherland, S.-C. Kuo, et al., “Rate constants for the thermal dissociation of N2O and the O(3P) + N2O reaction,” J. Phys. Chem. A 101, 1104 (1997).

    Article  Google Scholar 

  41. N. N. Kalitkin, I. A. Kozlitin, and A. A. Belov, TEFIS Database (Inst. Prikl. Mat. im. M.V. Keldysha Ross. Akad. Nauk, Moscow). http://tefis.ru

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to L.V. Kuzmina for valuable comments.

Funding

This work was supported by the Russian Science Foundation, grant no. 16-11-10001-P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Belov or N. N. Kalitkin.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, A.A., Kalitkin, N.N. Method for Experimental Data Processing Concerning Chemical Reaction Rates in Low-Atomic Gases. Comput. Math. and Math. Phys. 60, 1199–1207 (2020). https://doi.org/10.1134/S0965542520070040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520070040

Keywords:

Navigation