Skip to main content
Log in

Complete chloroplast genome of Jasminum sambac L. (Oleaceae)

  • Genetics & Evolutionary Biology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Jasmine [Jasminum sambac (L.) Aiton] is an important cultivated plant species that is valued for its ornamental, medicinal and edible values. However, the genomic information available for jasmine is limited. In this study, the complete chloroplast (cp) genomes of single-petal (SP) and double-petal (DP) cultivars of jasmine were investigated. An entire cp genome comparison, inverted repeat contraction and expansion were analyzed among several species, including the two jasmine cultivars, and phylogenetic analysis was performed. The results showed that the complete cp genomes were 163,315 bp (SP) and 163,281 bp (DP) long, respectively. Both genomes exhibited a single circular molecule with quadripartite structure consisting of a pair of inverted repeats separated by the large and small single-copy regions. Both SP and DP cultivars contained 114 unique genes. Sequence analysis identified 31 tandem repeats, 15 forward repeats, 14 palindrome repeats and five complement repeats in both cp genomes. A total of 118 and 117 simple sequence repeats (SSRs) were detected in the cp genomes of SP and DP cultivars, respectively. Phylogenetic analysis strongly supported that the SP cultivar was close to DP, and J. sambac belonged to the family Oleaceae, order Contortae. The complete cp genome sequences presented in this report may contribute to genetic and phylogenetic studies of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiryousef A, Hyvönen J, Poczai P (2018) IRscope: an online pro-gram to visualize the junction sites of chloroplast genomes. Bioinformatics 34:3030–3031

    Article  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucl Acids Res 27:573–580

    Article  CAS  Google Scholar 

  • Besnard G, Hernández P, Khadari B, Dorado G, Savolainen V (2011) Genomic profiling of plastid DNA variation in the Mediterranean olive tree. BMC Plant Biol 11:80

    Article  CAS  Google Scholar 

  • Brigitte L, Johannes N (2013) The complete chloroplast genome of Origanum vulgare L. (Lamiaceae). Gene 528:163–169

    Article  CAS  Google Scholar 

  • Chen JH, Hao ZD, Xu HB, Yang LM, Liu GX, Sheng Y, Zheng C, Zheng WW, Cheng TL, Shi JS (2015) The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Front Plant Sci 6:447

    Google Scholar 

  • Chen XL, Zhou JG, Cui YX, Wang Y, Duan BZ, Yao H (2018) Identification of Ligularia Herbs using the complete chloroplast genome as a super-barcode. Front Pharmacol 9:695

    Article  CAS  Google Scholar 

  • Cho KS, Yun BK, Yoon YH, Hong SY, Mekapogu M, Kim KH, Yang TJ (2015) Complete chloroplast genome sequence of tartary buckwheat (Fagopyrum tataricum) and comparative analysis with common buckwheat (F. esculentum). PLoS ONE 10:e0125332

    Article  CAS  Google Scholar 

  • Choi KS, Chung MG, Park SJ (2016) The complete chloroplast genome sequences of three Veroniceae species (Plantaginaceae): comparative analysis and highly divergent regions. Front Plant Sci 7:355

    Google Scholar 

  • Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190

    Article  CAS  Google Scholar 

  • Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci USA 91:6795–6801

    Article  CAS  Google Scholar 

  • Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134

    Article  CAS  Google Scholar 

  • Deng YM, Shao QS, Li CC, Ye XQ, Tang RS (2012) Differential responses of double petal and multi petal jasmine to shading: II. Morphology, anatomy and physiology. Sci Hortic 144:19–28

    Article  Google Scholar 

  • Deng YM, Sun XB, Gu CS, Jia XP, Liang LJ, Su JL (2017) Identification of pre-fertilization reproductive barriers and the underlying cytological mechanism in crosses among three petal-types of Jasminum sambac and their relevance to phylogenetic relationships. PLoS ONE 12:e0176026

    Article  CAS  Google Scholar 

  • Deng YM, Jia XP, Sun XB, Liang LJ, Su JL (2018) Comparison of jasmine antioxidant system responses to different degrees and durations of shade. Acta Physiol Plant 40:41

    Article  CAS  Google Scholar 

  • Dong LJ, Zhang SG (2001) Production status and scientific research direction of jasmine. Tea Commun 2:11–13

    Google Scholar 

  • Dong WP, Liu J, Yu J, Wang L, Zhou SL (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE 7:e35071

    Article  CAS  Google Scholar 

  • Dong WL, Wang RN, Zhang NY, Fan WB, Fang MF, Li ZH (2018) Molecular evolution of chloroplast genomes of orchid species: insights into phylogenetic relationship and adaptive evolution. Int J Mol Sci 19:716

    Article  CAS  Google Scholar 

  • Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling K (2011) The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs microsatellites and barcoding markers for population and phylogenetic studies. DNA Res 18:93–105

    Article  CAS  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucl Acids Res 32:W273–W279

    Article  CAS  Google Scholar 

  • Fu PC, Zhang YZ, Geng HM, Chen SL (2016) The complete chloroplast genome sequence of Gentiana lawrencei var. farreri (Gentianaceae) and comparative analysis with its congeneric species. PeerJ 4:2540

    Article  CAS  Google Scholar 

  • Goulding SE, Wolfe KH, Olmstead RG, Morden CW (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206

    Article  CAS  Google Scholar 

  • Hong SY, Cheon KS, Yoo KO, Lee HO, Cho KS, Suh JT, Kim SJ, Nam JH, Sohn HB, Kim YH (2017) Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C. album. Front Plant Sci 8:1696

    Article  Google Scholar 

  • Howe CJ, Barbrook AC, Koumandou VL, Nisbet RER, Symington HA, Wightman TF (2003) Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci 358:99–107

    Article  CAS  Google Scholar 

  • Hu JH, Gui ST, Zhu ZX, Wang XL, Ke WD, Ding Y (2015) Genome-wide identification of SSR and SNP markers based on whole-genome re-sequencing of a Thailand wild sacred lotus (Nelumbo nucifera). PLoS ONE 10:e0143765

    Article  CAS  Google Scholar 

  • Huotari T, Korpelainen H (2012) Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes. Gene 508:96–105

    Article  CAS  Google Scholar 

  • Kim K, Lee SC, Lee J, Yu Y, Yang K, Choi BS, Koh HJ, Waminal NE, Choi HI, Kim NH (2015) Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci Rep 5:15655

    Article  CAS  Google Scholar 

  • Kim HW, Lee HL, Lee DK, Kim KJ (2016) Complete plastid genome sequences of Abeliophyllum distichum Nakai (Oleaceae), a Korea endemic genus. Mitochondrial DNA B 1:596–598

    Article  Google Scholar 

  • Kong WQ, Yang JH (2016) The complete chloroplast genome sequence of Morus mongolica and a comparative analysis within the Fabidae clade. Curr Genet 62:165–172

    Article  CAS  Google Scholar 

  • Krak K, Vít P, Belyayev A, Douda J, Hreusová L, Mandák B (2016) Allopolyploid origin of Chenopodium album s. str. (Chenopodiaceae): a molecular and cytogenetic insight. PLoS ONE 11:e0161063

    Article  CAS  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucl Acids Res 29:4633–4642

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Li JL, Wang S, Yu J, Wang L, Zhou SL (2013) A modified CTAB protocol for plant DNA extraction. Chin Bull Bot 48:72–78

    Article  CAS  Google Scholar 

  • Li Y, Lk Jia, Wang ZH, Xing R, Chi XF, Chen SL, Gao QB (2019) The complete chloroplast genome of Saxifraga sinomontana (Saxifragaceae) and comparative analysis with other Saxifragaceae species. Braz J Bot 42:601–611

    Article  Google Scholar 

  • Liu WZ, Kong HH, Zhou J, Fritsch PW, Hao G, Gong W (2018) Complete chloroplast genome of Cercis chuniana (Fabaceae) with structural and genetic comparison to six species in Caesalpinioideae. Int J Mol Sci 19:1286

    Article  CAS  Google Scholar 

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW–a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucl Acids Res 41:W575–W581

    Article  Google Scholar 

  • Ma QY, Li SX, Bi CW, Hao ZD, Sun CR, Ye N (2016) Complete chloroplast genome sequence of a major economic species, Ziziphus jujuba (Rhamnaceae). Curr Genet 63:1–13

    Google Scholar 

  • Mader M, Pakull B, Blanc-Jolivet C, Paulini-Drewes M, Bouda ZH, Degen B, Small I, Kersten B (2018) Complete chloroplast genome sequences of four meliaceae species and comparative analyses. Int J Mol Sci 19:701

    Article  CAS  Google Scholar 

  • Mudunuri SB, Nagarajaram HA (2007) IMEx: imperfect microsatellite extractor. Bioinformatics 23:1181–1187

    Article  CAS  Google Scholar 

  • Neuhaus HE, Emes MJ (2000) Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol 51:111–140

    Article  CAS  Google Scholar 

  • Ni LH, Zhao ZL, Xu HX, Chen SL, Dorje G (2016) The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion. Gene 577:281–288

    Article  CAS  Google Scholar 

  • Nie XJ, Lv SZ, Zhang YX, Du XH, Wang L, Biradar SS, Tan XF, Wan FH, Song WN (2012) Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS ONE 7:e36869

    Article  CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  CAS  Google Scholar 

  • Qian J, Song JY, Gao HH, Zhu YJ, Xu J, Pang XH, Yao H, Sun C, Li XE, Li CY (2013) The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE 8:e57607

    Article  CAS  Google Scholar 

  • Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  CAS  Google Scholar 

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucl Acids Res 33:W686–W689

    Article  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayshida N, Matsubayasha T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Wang L, Wuyun TN, Du H, Wang D, Cao D (2016) Complete chloroplast genome sequences of Eucommia ulmoides: genome structure and evolution. Tree Genet Genomes 12:12

    Article  Google Scholar 

  • Wang WB, Yu H, Wang JH, Lei WJ, Gao JH, Qiu XP, Wang JS (2017) The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa (Oleaceae). Int J Mol Sci 18:2288

    Article  CAS  Google Scholar 

  • Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297

    Article  CAS  Google Scholar 

  • Wicke S, Müller KF, dePamphilis CW, Quandt D, Wickett NJ, Zhang Y, Renner SS, Schneeweiss GM (2013) Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 25:3711–3725

    Article  CAS  Google Scholar 

  • Wu ML, Li Q, Xu J, Li XW (2018) Complete chloroplast genome of the medicinal plant Amomum compactum: gene organization, comparative analysis, and phylogenetic relationships within Zingiberales. Chin Med 13:10

    Article  CAS  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  CAS  Google Scholar 

  • Yan C, Du JC, Gao L, Li Y, Hou XL (2019) The complete chloroplast genome sequence of watercress (Nasturtium ofcinale R Br): genome organization adaptive evolution and phylogenetic relationships in Cardamineae. Gene 699:24–36

    Article  CAS  Google Scholar 

  • Yang M, Zhang XW, Liu GM, Yin YX, Chen KF, Yun QZ, Zhao DJ, Almssallem IS, Yu J (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS ONE 5:e12762

    Article  CAS  Google Scholar 

  • Zhang Q, Li J, Zhao YB, Korban SS, Han YP (2012) Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Rep 30:539–546

    Article  CAS  Google Scholar 

  • Zhou M, Long W, Xia LI (2008) Patterns of synonymous codon usage bias in chloroplast genomes of seed plants. For Sci Pract 10:235–242

    CAS  Google Scholar 

  • Zhou JG, Chen XL, Cui YX, Sun W, Li YH, Wang Y, Song JY, Yao H (2017) Molecular structure and phylogenetic analyses of complete chloroplast genomes of two Aristolochia medicinal species. Int J Mol Sci 18:1839

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No.: 31772338).

Author information

Authors and Affiliations

Authors

Contributions

YD contributed to conceptualization. XQ, SC and YW contributed to data curation. XQ and JF supported formal analysis. HW contributed resources. XQ was involved in writing—original draft preparation. YD was involved in writing—review and editing. YD was responsible for funding acquisition.

Corresponding author

Correspondence to Yanming Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Chen, S., Wang, Y. et al. Complete chloroplast genome of Jasminum sambac L. (Oleaceae). Braz. J. Bot 43, 855–867 (2020). https://doi.org/10.1007/s40415-020-00638-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-020-00638-z

Keywords

Navigation