Skip to main content

Advertisement

Log in

Technical feasibility of reforming anaerobic digestion and landfill biogas streams into bio-hydrogen

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Hydrogen can be produced through different pathways, i.e., natural gas reforming, gasification of coal, and electrolysis of water. A more sustainable pathway is through bio-H2, which can be produced by bio-photolysis of water and photo-fermentation and dark fermentation of organic matters (OM). However, these routes are still limited by their specific energy requirement, process slowness, and microorganism sensitivity. These limitations can be mitigated by producing bio-H2 via steam reforming of biogas sources such as landfill or anaerobic digester. In this study, the influence of the methane concentration in the biogas stream on reforming metrics was investigated. Two levels of modeling were pursued here: equilibrium and high fidelity numerical simulations. The former considers several reaction constants, elemental mass conservation, and energy balance. The latter model is based on the reactive Navier-Stokes of non-isothermal and multiple species flow in a cylindrical reactor. Process metrics such as species concentrations and conversion percentages as well as thermal process efficiencies were delineated and evaluated. Results showed that methane concentration has a pronounced influence on the resulting hydrogen concentration and the overall reforming efficiency. The anaerobic CH4 source resulted in a mole fraction of near 0.3 for H2 and a reforming efficiency of 36%. These values are much lower than those evaluated for natural gas (mole fraction of 0.5 for H2 and reforming efficiency of 75%). Although this work illustrates the technical feasibility of biogas reforming, it highlights the low attained process efficiency that can be improved to achieve sustainable bio-H2 production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A:

Pre-exponential factor

A :

Constant

B :

Constant

C:

Molar concentration

c :

Specific heat

C :

Constant

d :

Diameter

E :

Energy

E:

Activation energy

F :

Force

f:

Heat fraction absorbed by particle

f :

Fraction

g :

Gravity

G :

Generation of turbulence kinetic energy

h :

Convective heat transfer coefficient

H :

Surface heat released/enthalpy reaction

J :

Species diffusion flux

k :

Turbulence kinetic energy

K:

Kinetic rate

M :

Molecular weight

N :

Number of chemical species

P :

Pressure

R :

Species net rate of production

Rˆ:

Species molar rate of creation

R:

Rate of particle surface species reaction per unit area

R:

Rate of particle surface species depletion

Re :

Relative Reynolds number

S :

Source term/entropy

T :

Temperature

t :

Time

u :

Velocity

v :

Velocity

x :

Axial coordinate

ε :

Rate of dissipation

Y :

Species mass fraction

β :

Temperature exponent

η :

Rate exponent for reactants and products

k:

Forward rate constant

κ :

Effective conductivity

ξ :

Radial coordinate

μ :

Dynamic viscosity

ν :

Stoichiometric coefficient for reactants and products

R:

Universal gas constant

ρ :

Density

σ :

Turbulent Prandtl number

τ :

Stress tensor

θ :

Effectiveness factor

ϕ :

Sensible Enthalpy

0:

Initial

D :

Drag

h :

Heat

i :

Parameter

j :

Parameter

K :

Turbulence kinetic energy

m :

Mass

P :

Product

p :

Particle

r :

Reaction

s :

Species

t :

Turbulent

v :

Volatiles

w :

Water

x :

Direction x

s :

Rate of dissipation

∞:

Continuous phase

References

  1. Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass wastes via dark fermentation: a review. Waste Biomass Valoriz 1:21–39

    Google Scholar 

  2. Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PN, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95

    Google Scholar 

  3. Karuppiah T, Azariah VE (2019) Biomass pretreatment for enhancement of biogas production. In Anaerobic Digestion. IntechOpen

  4. Pontoni L, Panico A, Salzano E, Frunzo L, Iodice P, Pirozzi F (2015) Innovative parameters to control the efficiency of anaerobic digestion process. Chem Eng Trans 43:2089–2094

    Google Scholar 

  5. Molino A, Nanna F, Ding Y, Bikson B, Braccio G (2013) Biomethane production by anaerobic digestion of organic waste. Fuel 103:1003–1009. https://doi.org/10.1016/j.fuel.2012.07.070

    Article  Google Scholar 

  6. Moller HB, Sommer SG, Ahring BK (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26:485–496

    Google Scholar 

  7. Amon T, Kryvoruchko V, Amon B, Moitzi G, Lyson D, Hackl E, Jeremic D, Zollitsch W, Pötsch E, Mayer K, Plank J (2002) ethanbildungsvermo¨gen von Mais – Einfluss der Sorte, der Konservierung und des Erntezeitpunktes. Final Report 47. October 2002. On behalf of Pioneer Saaten Ges.m.b.H. Parndorf (Austria). http://www.nas.boku.ac.at/4536.html

  8. Amon T, Kryvoruchko V, Amon B, Moitzi G, Lyson D, Hackl E, Jeremic D, Zollitsch W, Pötsch E (2003) Optimierung der Biogaserzeugung aus den Energiepflanzen Mais und Kleegras. Final Report 77. July 2003. Bundesministeriums fu¨ r Land- und Forstwirtschaft, Umwelt- und Wasserwirtschaft (Ed.). Research Project No. 1249. http://www.nas.boku.ac.at/4536.html

  9. Amon T, Kryvoruchko V, Amon B, Buga S, Amin A, Zollitsch W, Mayer K, Pötsch E (2004) Biogaserträge aus landwirtschaftlichen Gärgütern. In: BAL Gumpenstein, BMLFUW (Ed.) BAL-Bericht über das 10. Alpenländische Expertenforum zum Thema Biogasproduktion— Alternative Biomassenutzung und Energiegewinnung in der Landwirtschaft am 18–19 März 2004. ISBN 3-901980-72-5, pp. 21– 26. http://www.nas.boku.ac.at/4536.html

  10. Balsari P, Bonfanti P, Bozza E, Sangiorgi F, 14–20 August 1983. Evaluation of the influence of animal feeding on the performances of a biogas installation (mathematical model). In: Third International Symposium on Anaerobic Digestion. Boston, MA, USA, A 20, p. 7.

  11. Jönsson O, Polman E, Jensen JK, Eklund R, Schyl H, Ivarsson S (2013) Sustainable gas enters the European gas distribution system. Danish Gas Technology Center

  12. Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380

    Google Scholar 

  13. Shin H-C, Park J-W, Park K, Song H-C (2002) Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environ Pollut 119:227–236

    Google Scholar 

  14. Allen MR, Braithwaite A, Hills CC (1997) Trace organic compounds in landfill gas at seven UK waste disposal sites. Environ Sci Technol 31:1054–1061

    Google Scholar 

  15. Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ Sci Technol 32:2233–2237

    Google Scholar 

  16. Jaffrin A, Bentounes N, Joan AM, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86:113–123

    Google Scholar 

  17. Spiegel RJ, Preston JL (2003) Technical assessment of fuel cell operation on anaerobic digester gas at the Yonkers, NY, wastewater treatment plant. Waste Manag 23:709–717

    Google Scholar 

  18. Stern SA, Krishnakumar B, Charati SG, Amato WS, Frieman AA, Fuess DJ (1998) Performance of a bench-scale membrane pilot plant for the upgrading of biogas in a wastewater treatment plant. J Membr Sci 151:63–74

    Google Scholar 

  19. Spiegel RJ, Preston JL (2000) Test results for fuel cell operation on anaerobic digester gas. J Power Sources 86:283–288

    Google Scholar 

  20. Zainal BS, Zinatizadeh AA, Ong HX, Mohd NS, Ibrahim S (2018) Effects of process, operational and environmental variables on biohydrogen production using palm oil mill effluent (POME). Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2017.10.167

  21. Elagroudy S, El-Gohary F (2013) Microwave pre-treatment of mixed sludge for anaerobic digestion enhancement. Int J Therm Environ Eng 5:105–111

    Google Scholar 

  22. Tanikkul P, Pisutpaisal N (2014) Biohydrogen production under thermophilic condition from ozonated palm oil mill effluent. Energy Procedia 61:1234–1238

    Google Scholar 

  23. Budiman PM, Wu TY (2016) Ultrasonication pre-treatment of combined effluents from palm oil, pulp and paper mills for improving photofermentative biohydrogen production. Energy Convers Manag 119:142–150

    Google Scholar 

  24. Wong LP, Isa MH, Bashir MJK (2018) Disintegration of palm oil mill effluent organic solids by ultrasonication: optimisation by response surface methodology. Process Saf Environ Prot 114:123–132

    Google Scholar 

  25. Ghaebi H, Yari M, Gargari SG, Rostamzadeh H (2019) Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen. Renew Energy 130:87–102

    Google Scholar 

  26. Zhao X, Babu Joseph JK, Ozcan S (2020) Biogas reforming to syngas: a review. iScience, 23(5).

  27. Braga LB, Silveira JL, Da Silva ME, Tuna CE, Machin EB, Pedroso DT (2013) Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis. Renew Sust Energ Rev 28:166–173

    Google Scholar 

  28. Chiodo V, Maisano S, Zafarana G, Urbani F (2017) Effect of pollutants on biogas steam reforming. Int J Hydrog Energy 42(3):1622–1628

    Google Scholar 

  29. Avraam DG, Halkides TI, Liguras DK, Bereketidou OA, Goula MA (2010) An experimental and theoretical approach for the biogas steam reforming reaction. Int J Hydrog Energy 35(18):9818–9827

    Google Scholar 

  30. Ahmed S, Lee SH, Ferrandon MS (2015) Catalytic steam reforming of biogas–effects of feed composition and operating conditions. Int J Hydrog Energy 40(2):1005–1015

    Google Scholar 

  31. Kolbitsch P, Pfeifer C, Hofbauer H (2008) Catalytic steam reforming of model biogas. Fuel 87(6):701–706

    Google Scholar 

  32. Effendi A, Hellgardt K, Zhang ZG, Yoshida T (2005) Optimising H2 production from model biogas via combined steam reforming and CO shift reactions. Fuel 84(7-8):869–874

    Google Scholar 

  33. Ashrafi M, Pröll T, Pfeifer C, Hofbauer H (2008) Experimental study of model biogas catalytic steam reforming: 1. Thermodynamic optimization. Energy Fuel 22(6):4182–4189

    Google Scholar 

  34. Ashrafi M, Pfeifer C, Pröll T, Hofbauer H (2008) Experimental study of model biogas catalytic steam reforming: 2. Impact of sulfur on the deactivation and regeneration of Ni-based catalysts. Energy Fuel 22(6):4190–4195

    Google Scholar 

  35. Izquierdo U, Barrio VL, Lago N, Requies J, Cambra JF, Güemez MB, Arias PL (2012) Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional and microreactor reaction systems. Int J Hydrog Energy 37(18):13829–13842

    Google Scholar 

  36. Alves HJ, Junior CB, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araújo CH (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrog Energy 38(13):5215–5225

    Google Scholar 

  37. Santarelli M, Quesito F, Novaresio V, Guerra C, Lanzini A, Beretta D (2013) Direct reforming of biogas on Ni-based SOFC anodes: modelling of heterogeneous reactions and validation with experiments. J Power Sources 242:405–414

    Google Scholar 

  38. Corigliano O, Fragiacomo P (2017) Numerical modeling of an indirect internal CO2 reforming solid oxide fuel cell energy system fed by biogas. Fuel 196:352–361

    Google Scholar 

  39. Kim S, Bae J (2014) Numerical analysis of a 20-kWe biogas steam reformer in PEMFC applications. Int J Hydrog Energy 39(34):19485–19493

    Google Scholar 

  40. Chiodo V, Galvagno A, Lanzini A, Papurello D, Urbani F, Santarelli M, Freni S (2015) Biogas reforming process investigation for SOFC application. Energy Convers Manag 98:252–258

    Google Scholar 

  41. Mozdzierz M, Brus G, Sciazko A, Komatsu Y, Kimijima S, Szmyd JS (2016) Towards a thermal optimization of a methane/steam reforming reactor. Flow Turbul Combust 97(1):171–189

    Google Scholar 

  42. Xuan J, Leung MK, Leung DY, Ni M (2009) Integrating chemical kinetics with CFD modeling for autothermal reforming of biogas. Int J Hydrog Energy 34(22):9076–9086

    Google Scholar 

  43. Hamedi MR, Tsolakis A, Lau CS (2014) Biogas upgrading for on-board hydrogen production: reforming process CFD modelling. Int J Hydrog Energy 39(24):12532–12540

    Google Scholar 

  44. Cipitì F, Barbera O, Briguglio N, Giacoppo G, Italiano C, Vita A (2016) Design of a biogas steam reforming reactor: a modelling and experimental approach. Int J Hydrog Energy 41(27):11577–11583

    Google Scholar 

  45. Camacho YM, Bensaid S, Lorentzou S, Vlachos N, Pantoleontos G, Konstandopoulos A, Luneau M, Meunier FC, Guilhaume N, Schuurman Y, Werzner E (2017) Development of a robust and efficient biogas processor for hydrogen production. Part 1: modelling and simulation. Int J Hydrog Energy 42(36):22841–22855

    Google Scholar 

  46. Palma V, Ricca A, Meloni E, Martino M, Miccio M, Ciambelli P (2016) Experimental and numerical investigations on structured catalysts for methane steam reforming intensification. J Clean Prod 111:217–230

    Google Scholar 

  47. Minchener AJ (2005) Coal gasification for advanced power generation. Fuel 84(17):2222–2235

    Google Scholar 

  48. Prins MJ, Ptasinski KJ, Janssen FJJG (2007) From coal to biomass gasification: comparison of thermodynamic efficiency. Energy 32(7):1248–1259

    Google Scholar 

  49. de Souza-Santos ML (2004) Solid fuels combustion and gasification: modeling, simulation, and equipment operation. Mechanical engineering. Vol. 180., New York: Marcel Dekker. 439

  50. Patel KS, Sunol AK (2007) Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor. Int J Hydrog Energy 32(13):2344–2358

    Google Scholar 

  51. Chein R, Chen YC, Chung JN (2013) Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production. Appl Energy 102:1022–1034

    Google Scholar 

  52. Murmura MA, Cerbelli S, Annesini MC (2017) An equilibrium theory for catalytic steam reforming in membrane reactors. Chem Eng Sci 160:291–303

    Google Scholar 

  53. Murmura MA, Cerbelli S, Annesini MC (2017) Transport-reaction-permeation regimes in catalytic membrane reactors for hydrogen production. The steam reforming of methane as a case study. Chem Eng Sci 162:88–103

    Google Scholar 

  54. Schädel BT, Duisberg M, Deutschmann O (2009) Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst. Catal Today 142(1-2):42–51

    Google Scholar 

  55. Khzouz M, Gkanas EI (2018) Experimental and numerical study of low temperature methane steam reforming for hydrogen production. Catalysts 8(1):5

    Google Scholar 

  56. Bion N, Epron F, Duprez D (2010) Bioethanol reforming for H2 production. A comparison with hydrocarbon reforming. Catalysis 22:1–55

    Google Scholar 

  57. Angeli SD, Pilitsis FG, Lemonidou AA (2015) Methane steam reforming at low temperature: effect of light alkanes’ presence on coke formation. Catal Today 242:119–128

    Google Scholar 

  58. Shagdar E, Lougou BG, Shuai Y, Ganbold E, Chinonso OP, Tan H (2020) Process analysis of solar steam reforming of methane for producing low-carbon hydrogen. RSC Adv 10(21):12582–12597

    Google Scholar 

  59. Padro CEG and Putsche V Survey of the economics of hydrogen technologies. National Renewable Energy Laboratory. September 1999

  60. ANSYS (2009) ANSYS CFX-Solver Theory guide. http://www.ansys.com Inc. 2009-01-23

  61. Magnussen BF, Hjertager, BH (1997) On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion Symposium (International) on Combustion. Vol. 16, Issue 1, 1977, Pages 719-729 https://doi.org/10.1016/S0082-0784(77)80366-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isam Janajreh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janajreh, I., Adeyemi, I. & Elagroudy, S. Technical feasibility of reforming anaerobic digestion and landfill biogas streams into bio-hydrogen. Biomass Conv. Bioref. 11, 275–288 (2021). https://doi.org/10.1007/s13399-020-00911-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00911-x

Keywords

Navigation